Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Thermal Considerations for Meeting 20°C and Stringent Temperature Gradient Requirements of IXO SXT Mirror Modules

2009-07-12
2009-01-2391
The Soft X-Ray Telescope (SXT) is an instrument on the International X-Ray Observatory (IXO). Its flight mirror assembly (FMA) has a single mirror configuration that includes a 3.3 m diameter and 0.93 m tall mirror assembly. It consists of 24 outer modules, 24 middle modules and 12 inner modules. Each module includes more than 200 mirror segments. There are a total of nearly 14, 000 mirror segments. The operating temperature requirement of the SXT FMA is 20°C. The spatial temperature gradient requirement between the FMA modules is ±1°C or smaller. The spatial temperature gradient requirement within a module is ±0.5°C. This paper presents thermal design considerations to meet these stringent thermal requirements.
Journal Article

Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions

2009-07-12
2009-01-2371
The Space Suit Water Membrane Evaporator (SWME) is a baseline heat rejection technology that was selected to develop the Constellation Program lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element Portable Life Support Subsystem to provide cooling to the thermal loop via water evaporation to the vacuum of space. Previous work [1] described the test methodology and planning that are entailed in comparing the test performance of three commercially available HoFi materials as alternatives to the sheet membrane prototype for SWME: (1) porous hydrophobic polypropylene, (2) porous hydrophobic polysulfone, and (3) ion exchange through nonporous hydrophilic-modified Nafion®.
Journal Article

Mars Science Laboratory Mechanically Pumped Fluid Loop for Thermal Control - Design, Implementation, and Testing

2009-07-12
2009-01-2437
The Mars Science Laboratory (MSL) mission to land a large rover on Mars is being prepared for Launch in 2011. A Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the rover provides an electrical power of 110 W for use in the rover and the science payload. Unlike the solar arrays, MMRTG provides a constant electrical power during both day and night for all seasons (year around) and latitudes. The MMRTG dissipates about 2000 W of waste heat to produce the desired electrical power. One of the challenges for MSL Rover is the thermal management of the large amount of MMRTG waste heat. During operations on the surface of Mars this heat can be harnessed to maintain the rover and the science payload within their allowable limits during nights and winters without the use of electrical survival heaters. A mechanically pumped fluid loop heat rejection and recovery system (HRS) is used to pick up some of this waste heat and supply it to the rover and payload.
Journal Article

Improved Accuracy of Unguided Articulated Robots

2009-11-10
2009-01-3108
The effectiveness of serial link articulated robots in aerospace drilling and fastening is largely limited by positional accuracy. Unguided production robotic systems are practically limited to +/-0.5mm, whereas the majority of aerospace applications call for tolerances in the +/-0.25mm range. The precision with which holes are placed on an aircraft structure is affected by two main criteria; the volumetric accuracy of the positioner, and how the system is affected when an external load is applied. Production use and testing of off-the-shelf robots has highlighted the major contributor to reduced stiffness and accuracy as being error ahead of the joint position feedback such as backlash and belt stretch. These factors affect the omni-directional repeatability, thus limiting accuracy, and also contribute to deflection of the tool point when process forces are applied.
Journal Article

Solution for Automated Drilling and Lockbolt Installation in Carbon Fiber Structures

2009-11-10
2009-01-3214
Manual drilling and Lockbolt installation in carbon fiber structures is a labor intensive process. To reduce man hour requirements while concurrently improving throughput and process quality levels BROETJE-Automation developed a gantry positioning system with high performance multi-function end effectors for this application. This paper presents a unique solution featuring fully automated drilling and Lockbolt installation (inclusive of automated collar installation) for the vertical tail plane (vertical stabilizer) of large commercial aircraft. A flexible and reconfigurable assembly jig facilitates high access of the end effectors and increases the equipment efficiency. The described system fulfils the demand for affordable yet flexible precision manufacturing with the capacity to handle different aircraft model panels within the work envelope.
Journal Article

Protection of the C-17 Airplane during Semi Prepared Runway Operations

2009-11-10
2009-01-3203
The C-17 airplane operates in some of the most challenging environments in the world including semi prepared runway operations (SPRO). Typical semi-prepared runways are composed of a compacted soil aggregate of sand, silt, gravel, and rocks. When the airplane lands or takes off from a semi-prepared runway, debris, including sand, gravel, rocks and, mud is kicked up from the nose landing gear (NLG) and the main landing gear (MLG) tires. As the airplane accelerates to takeoff or decelerates from landing touchdown, this airborne debris impacts the underbelly and any component mounted on the underbelly. The result is the erosion of the protective surface coating and damage to systems that protrude below the fuselage into the debris path. The financial burden caused by SPRO damage is significant due to maintenance costs, spares costs and Non-Mission Capable (NMC) time.
Journal Article

Flying Test Bed Performance Testing of High-Bypass-Ratio Turbofans

2009-11-10
2009-01-3133
The commercial turbofan trend of increasing bypass ratio and decreasing fan pressure ratio has seen its latest market entry in Pratt & Whitney's PurePower™ product line, which will power regional aircraft for the Bombardier and Mitsubishi corporations, starting in 2013. The high-bypass-ratio, low-fan-pressure-ratio trend, which is aimed at diminishing noise while increasing propulsive efficiency, combines with contemporary business factors including the escalating cost of testing and limited availability of simulated altitude test sites to pose formidable challenges for engine certification and performance validation. Most fundamentally, high bypass ratio and low fan pressure ratio drive increased gross-to-net thrust ratio and decreased fan temperature rise, magnifying by a factor of two or more the sensitivity of in-flight thrust and low spool efficiency to errors of measurement and assumption, i.e., physical modeling.
Journal Article

Experimental Techniques of Measuring Vibratory Force for Aircraft Wings

2009-11-10
2009-01-3283
The authors measured the vibratory forces acting on an airfoil model by performing a ground vibration test (GVT). The airfoil model was manufactured using rapid prototyping. In the experiments, the airfoil model's structural response was also recorded and described. This paper detailedly introduces the entire experiment process and the obtained experimental data agreed well to the actual values.
Journal Article

1-g Suit Port Concept Evaluator 2008 Test Results

2009-07-12
2009-01-2572
The Lunar Electric Rover (LER), which was formerly called the Small Pressurized Rover (SPR), is currently being carried as an integral part of the lunar surface architectures that are under consideration in the Constellation Program. One element of the LER is the suit port, which is the means by which crew members perform Extravehicular Activities (EVAs). Two suit port deliverables were produced in fiscal year 2008: a 1-g suit port concept evaluator for functional integrated testing with the LER 1-g concept vehicle and a functional and pressurizable Engineering Unit (EU). This paper focuses on the 1-g suit port concept evaluator test results from the Desert Research and Technology Studies (D-RATS) October 2008 testing at Black Point Lava Flow (BPLF), Arizona. The 1-g suit port concept evaluator was integrated with the 1-g LER cabin and chassis concepts.
Journal Article

Application of a Tunable-Diode-Laser Absorption Diagnostic for CO Measurements in an Automotive HCCI Engine

2010-10-25
2010-01-2254
An infrared laser absorption technique has been developed to measure in-cylinder concentrations of CO in an optical, automotive HCCI engine. The diagnostic employs a distributed-feedback, tunable diode laser selected to emit light at the R15 line of the first overtone of CO near 2.3 μm. The collimated laser beam makes multiple passes through the cylinder to increase its path length and its sampling volume. High-frequency modulation of the laser output (wavelength modulation spectroscopy) further enhances the signal-to-noise ratio and detection limits of CO. The diagnostic has been tested in the motored and fired engine, exhibiting better than 200-ppm sensitivity for 50-cycle ensemble-average values of CO concentration with 1-ms time resolution. Fired results demonstrate the ability of the diagnostic to quantify CO production during negative valve overlap (NVO) for a range of fueling conditions.
Journal Article

Conversion of a Spark-Ignited Aircraft Engine to JP-8 Heavy Fuel for Use in Unmanned Aerial Vehicles

2011-04-12
2011-01-0145
In order to satisfy a single-fuel mandate, the U.S. Department of Defense has a need for engines in the 20 to 50 hp range to power midsized Unmanned Aerial Vehicles (UAVs) and the ability to operate on JP-8 also known as “heavy” fuel. It is possible to convert two-stroke aircraft engines designed to operate on a gasoline-oil mixture to run on JP-8/oil using the Sonex Combustion System (SCS) developed by Sonex Research, Inc. Conversion of the engine involves replacing the cylinder heads with new components designed to accept a steel combustion ring insert. Also required are glow-plugs to preheat the cylinder head prior to engine start. The converted engine produces the same power output as the stock engine operating on gasoline. Conversion of both a 20 hp and 40 hp engine was successfully achieved using the SCS.
Journal Article

Emission Measurements of the AI-14RA Aviation Engine in stationary test and under Real Operating Conditions of PZL-104 ‘Wilga’ Plane

2010-05-05
2010-01-1563
Due to a rapid development of air transportation there is a need for the assessment of real environmental risk related to the aircraft operation. The emission of carbon monoxide and particulate matter is still a serious threat~constituting an obstacle in the development of combustion engines. The applicable regulations related to the influence of the air transportation on the environment introduced by EPA (Environmental Protection Agency), ICAO (International Civil Aviation Organization) contained in JAR 34 (JAA, Joint Aviation Requirements, JAR 34, Aircraft Engine Emissions), FAR 34 (FAA, Federal Aviation Regulations, Part 34, Fuel Venting and Exhaust Emission Requirements for Turbine Engine Powered Airplanes), mostly pertain to the emission of noise and exhaust gas compounds, NOx in particular. They refer to jet engines and have stationary test procedures depending on the engine operating conditions.
Journal Article

Expanding the Use of Robotics in Airframe Assembly Via Accurate Robot Technology

2010-09-28
2010-01-1846
Serial link articulated robots applied in aerospace assembly have largely been limited in scope by deficiencies in positional accuracy. The majority of aerospace applications require tolerances of +/−0.25mm or less which have historically been far beyond reach of the conventional off-the-shelf robot. The recent development of the accurate robot technology represents a paradigm shift for the use of articulated robotics in airframe assembly. With the addition of secondary feedback, high-order kinematic model, and a fully integrated conventional CNC control, robotic technology can now compete on a performance level with customized high precision motion platforms. As a result, the articulated arm can be applied to a much broader range of assembly applications that were once limited to custom machines, including one-up assembly, two-sided drilling and fastening, material removal, and automated fiber placement.
Journal Article

Applied Accurate Robotic Drilling for Aircraft Fuselage

2010-09-28
2010-01-1836
Once limited by insufficient accuracy, the off-the-shelf industrial robot has been enhanced via the integration of secondary encoders at the output of each of its axes. This in turn with a solid mechanical platform and enhanced kinematic model enable on-part accuracies of less than +/−0.25mm. Continued development of this enabling technology has been demonstrated on representative surfaces of an aircraft fuselage. Positional accuracy and process capability was validated in multiple orientations both in upper surface (spindle down) and lower surface (spindle up) configurations. A second opposing accurate robotic drilling system and full-scale fuselage mockup were integrated to simulate doubled throughput and to demonstrate the feasibility of maintaining high on-part accuracy with a dual spindle cell.
Journal Article

Production Implementation of Multiple Machine, High Speed Fiber Placement for Large Structures

2010-09-28
2010-01-1877
A two machine Automated Fiber Placement (AFP) cell capable of laying 1/2\mi and 1/4\mi tow at rates up to 1800\mi/min (45.7 m/min), including feeds and cuts, has been implemented for the manufacture of large primary aircraft structures. The control architecture of the cell is such that part programs are machine independent and can run on either machine or simultaneously on both machines at the same time. A Central Cell Controller pushes part programs to each AFP machine and coordinates the cell. Volumetric accuracy of the two machines is under 0.008\mi (0.2 mm) radial error in the entire compensated envelop, which is approximately 64' x 21' x 14' (19.5 m x 6.4 m x 4.3 m) for each machine. This is accomplished through optimization of volumetric kinematic compensation parameters using a linear numerical solver. The machines reference a common coordinate system which allows great flexibility in part programming.
Journal Article

Innovative Processing Technology of Chromium Carbide Coating to Apprise Performance of Piston Rings

2013-04-09
2012-01-2327
A chemical vapor deposition method for preparing high-quality chromium carbide coatings was developed. The resulting coatings exhibit high adhesion and increase wear resistance of the cylinder piston group components as compared to common coatings prepared by electrolytic chromium plating. The operation performance of the coatings was tested using scrapper piston of the Raba-Man diesel engine of Ikarus bus and compression and oil scrapper rings of the diesel engine 10D100. It was found that chromium coatings prepared by the method proposed are characterized by relatively low coefficient of friction and high corrosion resistance.
Journal Article

A Computational Approach to Evaluate the Automotive Windscreen Wiper Placement Options Early in the Design Process

2013-05-13
2013-01-1933
For most car manufacturers, wind noise from the greenhouse region has become the dominant high frequency noise contributor at highway speeds. Addressing this wind noise issue using experimental procedures involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process. Previously, a computational approach that couples an unsteady computational fluid dynamics solver (based on a Lattice Boltzmann method) to a Statistical Energy Analysis (SEA) solver had been validated for predicting the noise contribution from the side mirrors. This paper presents the use of this computational approach to predict the vehicle interior noise from the windshield wipers, so that different wiper placement options can be evaluated early in the design process before the surface is frozen.
Journal Article

Bird and Tyre Impact Analysis on Landing Gear

2013-12-20
2013-01-9002
As part of the aircraft certification process, landing gear has to be certified against particular risks such as bird and tyre impact cases. According to international aviation regulations, it has to be demonstrated that the landing gear is designed to ensure the capability for continued safe flight and landing after bird impact or after tyre impact resulting from wheel or tyre failure. Structural parts such as the down-lock mechanism must be validated against these requirements since their structural integrity is essential to ensure landing gear down-locking for landing and subsequent on ground movement. Recently, MESSIER-BUGATTI-DOWTY has been involved in the development of explicit analysis in support of bird and tyre impact justification. A model of the down-lock mechanism has been developed and a full scale test has been set up in order to demonstrate the validity of the analysis.
Journal Article

Detailed Analysis of Variables Affecting Wing Kinematics of Bat Flight

2013-12-20
2013-01-9003
Body motions of flying animals can be very complex, especially when the body parts are greatly flexible and they interact with the surrounding fluid. The wing kinematics of an animal flight is governed by a large number of variables and thus the measurement of complete flapping flight is not so simple, making it very complex to understand the contribution of each parameter to the performance and hence, to decide the important parameters for constructing the kinematic model of a bat is nearly impossible. In this paper, the influence of each parameter is uncovered and the variables that a specified reconstruction of bat flight should include in order to maximally reconstruct actual dimensional complexity, have been presented in detail. The effects of the different kinematic parameters on the lift coefficient are being resulted.
Journal Article

Roll and Pitch Produced During an Uneven Wing Deployment of a Hybrid Projectile

2014-09-16
2014-01-2112
Uneven wing deployment of a Hybrid Projectile (HP), an Unmanned Aerial Vehicle (UAV) that is ballistically launched and then transforms, was investigated to determine the amount of roll and pitch produced during wing deployment. During testing of an HP prototype, it was noticed that sometimes the projectile began to slightly roll after the wings were deployed shortly after apogee. In this study, an analytical investigation was done to determine how the projectile body dynamics would be affected by the wings being deployed improperly. Improper and uneven wing deployment situations were investigated throughout the course of this study. The first analyzed was a single wing delaying to open. The second was if only one wing was to lock into a positive angle of incidence. The roll characteristics when both wings were deployed but only one was locked into an angle of incidence resulted in a steady state roll rate of 4.5 degrees per second.
X