Refine Your Search

Topic

Author

Search Results

Video

Development of a Hybrid Control Strategy for an Advanced Parallel HEV Powertrain with Two Electrical Axles

2012-05-29
This paper proposes a current limits distribution control strategy for a parallel hybrid electric vehicle (parallel HEV) which includes an advanced powertrain concept with two electrical driving axles. One of the difficulties of an HEV powertrain with two electrical driving axles is the ability to distribute the electrical current of one high voltage battery appropriately to the two independent electrical motors. Depending on the vehicle driving condition (i.e., car maneuver) or the maximization of the entire efficiency chain of the system, a suitable control strategy is necessary. We propose an input-output feedback linearization strategy to cope with the nonlinear system subject to input constraints. This approach needs an external, state dependent saturation element, which translates the state dependent control input saturation to the new feedback linearizing input and therefore preserves the properties of the differential geometric framework.
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Journal Article

Management of Energy Flow in Complex Commercial Vehicle Powertrains

2012-04-16
2012-01-0724
After the realization of very low exhaust gas emissions and corresponding OBD requirements to fulfill Euro VI and Tier 4 legislation, the focus in heavy-duty powertrain development is on the reduction of fuel consumption and thus CO₂ emissions again. Besides this, the total vehicle operation costs play another major role. A holistic view of the overall powertrain system including the combustion process, exhaust gas aftertreatment, energy recuperation and energy storage is necessary in order to obtain the best possible system for a given application. A management system coordinating the energy flow between the different subsystems while guaranteeing low exhaust emissions plays a major part in operating such complex architectures under optimal conditions.
Technical Paper

In-cylinder Flow Field Measurement with Doppler Global Velocimetry in Combination with Droplet Distribution Visualization by Mie Scattering

2009-04-20
2009-01-0652
Flow fields and fuel distribution play a critical role in developing the combustion process inside the cylinders of piston engines. This has prompted the development of measurement and diagnostic capabilities including laser techniques like Doppler Global Velocimetry (DGV). The paper provides an overview of the basics of DGV and the type of results that can be obtained. It also includes a short comparison to Particle Image Velocimetry (PIV) which is a popular alternative method. Furthermore, it is shown that DGV can be used simultaneously in combination with droplet distribution visualization inside cylinders based on Mie scattering.
Technical Paper

The Automated Shift Transmission (AST) - Possibilities and Limits in Production-Type Vehicles

2001-03-05
2001-01-0881
State-of-the-art powertrain concepts with automatic transmission must comply with increasingly stringent legislation on emissions and fuel consumption while fulfilling or surpassing customers' expectations as to driveability. In this respect, automated manual transmissions (AMT) and automated shift transmissions (AST) must compete with conventional automatic transmissions (AT) and continuously variable transmissions (CVT). In order to exploit the theoretical advantages of ASTs and put them into practice, complex ECU functions are needed to coordinate engine and transmission. Adaptive control, sophisticated clutch management and an intelligent shifting strategy allow shifting quality and shifting points to be simultaneously optimized to the effect that performance and comfort are increased while fuel consumption is reduced.
Technical Paper

Battery Simulation

2001-03-05
2001-01-0776
Battery simulation by a DSP-controlled high current power supply is used to improve repeatability and comparability of starting tests, especially at low temperatures. The simulator's algorithm calculates the internal resistance of the battery by a timely constant resistor and a variable resistor representing the actual discharge history. The output voltage of the simulator is set as a function of internal resistor and load current with temperature and state of charge as setup parameter. The simulator was evaluated in cold start testing in comparison to real batteries. As a result, batteries are simulated with high repeatability. Deviations to real battery behavior are in the range of test to test deviations using real batteries.
Technical Paper

A New Approach for a Multi-Fuel, Torque Based ECU Concept using Automatic Code Generation

2001-03-05
2001-01-0267
The software design of this new engine control unit is based on a unique and homogenous torque structure. All input signals are converted into torque equivalents and a torque coordinator determines their influence on the final torque delivered to the powertrain. The basic torque structure is independent on the type of fuel and can be used for gasoline, diesel, or CNG injection systems. This allows better use of custom specific algorithms and facilitates reusability, which is supported by the graphical design tool that creates all modules using automatic code generation. Injection specific algorithms can be linked to the software by simply setting a software switch.
Technical Paper

Cold Start Simulation and Test on DISI Engines Utilizing a Multi-Zone Vaporization Approach

2012-04-16
2012-01-0402
Recent years have witnessed a dramatic increase in global ethanol production, while cellulosic feedstock or the algae-based production approach make more sustainable ethanol production foreseeable in many countries. The ethanol produced will increasingly penetrate the markets not only as blending component, but also as main fuel component, boosting demand for flex-fuel vehicles. One of the main challenges for flex-fuel vehicles is the cold start due to the poor vapor pressure of ethanol. This is detrimental to starting capability in DISI engines in particular, with increased cylinder wall wetting causing higher oil dilution. The most efficient solution for DISI engines is a smart injection strategy, enabling fuel vaporization during injection in the compression stroke. But this requires optimum injection parameters such as injection timing, split ratio and rail pressure.
Technical Paper

Development of a Hybrid Control Strategy for an Advanced Parallel HEV Powertrain with Two Electrical Axles

2012-04-16
2012-01-1007
This paper proposes a current limits distribution control strategy for a parallel hybrid electric vehicle (parallel HEV) which includes an advanced powertrain concept with two electrical driving axles. One of the difficulties of an HEV powertrain with two electrical driving axles is the ability to distribute the electrical current of one high voltage battery appropriately to the two independent electrical motors. Depending on the vehicle driving condition (i.e., car maneuver) or the maximization of the entire efficiency chain of the system, a suitable control strategy is necessary. We propose an input-output feedback linearization strategy to cope with the nonlinear system subject to input constraints. This approach needs an external, state dependent saturation element, which translates the state dependent control input saturation to the new feedback linearizing input and therefore preserves the properties of the differential geometric framework.
Technical Paper

Scene Based Safety Functions for Pedestrian Detection Systems

2013-01-09
2013-26-0020
The protection of pedestrians from injuries by accidental collision is a primary focus of the automotive industry and of government legislation [1]. In this area, scientists and developers are faced with a multitude of requirements. Complex scenes are to be analyzed. The wide spectrum of where pedestrians and cyclists appear on the road, weather, and light conditions are just examples. Data fusion of raw or preprocessed signals for several sensors (cameras, radar, lidar, ultrasonic) need to be considered as well. Accordingly, algorithms are very complex. When moving from prototypic environments to embedded systems, additional constraints must be considered. Limited system resources drive the need to simplify and optimize for technical and economic reasons. With all these constraints, how can the safety functions be safe-guarded? This submission considers scene-based methods for the development of vehicle functions from prototype to series production focusing on functional safety.
Technical Paper

Calibration of Torque Structure and Charge Control System for SI Engines Based on Physical Simulation Models

2006-04-03
2006-01-0854
A physics-based simulation program developed by IAV is used to calibrate the torque structure and cylinder charge calculation in the electronic control unit of SI engines. The model calculates both the charge cycle and combustion phase based on flow mechanics and a fractal combustion model. Once the air mass in the charge cycle has been computed, a fractal combustion model is used for the ongoing calculation of cylinder pressure and temperature. The progression of cylinder pressure over the high and low-pressure phases also provides information on engine torque. Following the engine-specific calibration of the model using elemental geometric information and reduced test bench measurements, the physical engine properties can be simulated over the operating cycle. The calibrated model allows simulations to be carried out at all operating points and the results to be treated as virtual test bench measurements.
Technical Paper

Evolutionary Safety Testing of Embedded Control Software by Automatically Generating Compact Test Data Sequences

2005-04-11
2005-01-0750
Whereas the verification of non-safety-related, embedded software typically focuses on demonstrating that the implementation fulfills its functional requirements, this is not sufficient for safety-relevant systems. In this case, the control software must also meet application-specific safety requirements. Safety requirements typically arise from the application of hazard and/or safety analysis techniques, e.g. FMEA, FTA or SHARD. During the downstream development process it must be shown that these requirements cannot be violated. This can be achieved utilizing different techniques. One way of providing evidence that violations of the safety properties identified cannot occur is to thoroughly test each of the safety requirements. This paper introduces Evolutionary Safety Testing (EST), a fully automated procedure for the safety testing of embedded control software.
Technical Paper

Software Quality is Not a Coincidence: A Model-Based Test Case Generator

2005-04-11
2005-01-1664
IAV GmbH is currently developing a test case generator, which uses information from Simulink®/Stateflow® models to generate test cases automatically. These test cases can then be applied during software tests for an ECU to show conformance to the original model. Using predefined rules, test cases for individual blocks are generated and converted into test cases for a whole model. The test cases can be saved as a XML file. Then, this file can be converted into test script languages which are used by tools for test execution. With the test case generator, the time-consuming and error-prone task of manual test case definition can be automated, thus decreasing test expenses for each test while increasing test quality.
Technical Paper

Machine-Learned Emission Model for Diesel Exhaust On-Board Diagnostics and Data Flow Processor as Enabler

2021-12-17
2021-01-5108
Conventional methods of physicochemical models require various experts and a high measurement demand to achieve the required model accuracy. With an additional request for faster development time for diagnostic algorithms, this method has reached the limits of economic feasibility. Machine learning algorithms are getting more popular in order to achieve a high model accuracy with an appropriate economical effort and allow to describe complex problems using statistical methods. An important point is the independence from other modelled variables and the exclusive use of sensor data and actuator settings. The concept has already been successfully proven in the field of modelling for exhaust gas aftertreatment sensors. An engine-out nitrogen oxide (NOX) emission sensor model based on polynomial regression was developed, trained, and transferred onto a conventional automotive electronic control unit (ECU) and also proves real-time capability.
Journal Article

Low-Temperature NOx Reduction by H2 in Diesel Engine Exhaust

2022-03-29
2022-01-0538
For the NOx removal from diesel exhaust, the selective catalytic reduction (SCR) and lean NOx traps are established technologies. However, these procedures lack efficiency below 200 °C, which is of importance for city driving and cold start phases. Thus, the present paper deals with the development of a novel low-temperature deNOx strategy implying the catalytic NOx reduction by hydrogen. For the investigations, a highly active H2-deNOx catalyst, originally engineered for lean H2 combustion engines, was employed. This Pt-based catalyst reached peak NOx conversion of 95 % in synthetic diesel exhaust with N2 selectivities up to 80 %. Additionally, driving cycle tests on a diesel engine test bench were also performed to evaluate the H2-deNOx performance under practical conditions. For this purpose, a diesel oxidation catalyst, a diesel particulate filter and a H2 injection nozzle with mixing unit were placed upstream to the full size H2-deNOx catalyst.
Technical Paper

Diesel Combustion and Control Using a Novel Ignition Delay Model

2018-04-03
2018-01-1242
The future emission standards, including real driving emissions (RDE) measurements are big challenges for engine and after-treatment development. Also for development of a robust control system, in real driving emissions cycles under varied operating conditions and climate conditions, like low ambient temperature as well as high altitude are advanced physical-based algorithms beneficial in order to realize more precise, robust and efficient control concepts. A fast-running novel physical-based ignition delay model for diesel engine combustion simulation and additionally, for combustion control in the next generation of ECUs is presented and validated in this study. Detailed chemical reactions of the ignition processes are solved by a n-heptane mechanism which is coupled to the thermodynamic simulation of in-cylinder processes during the compression and autoignition phases.
Technical Paper

Hybrid Physical and Machine Learning-Oriented Modeling Approach to Predict Emissions in a Diesel Compression Ignition Engine

2021-04-06
2021-01-0496
The development and calibration of modern combustion engines is challenging in the area of continuously tightening emission limits and the necessity for meeting real driving emissions regulations. A focus is on the knowledge of the internal engine processes and the determination of pollutants formations in order to predict the engine emissions. A physical model-based development provides an insight into hardly measurable phenomena properties and is robust against changing input data. With increasing modeling depth the required computing capacities increase. As an alternative to physical modeling, data-driven machine learning methods can be used to enable high-performance modeling accuracy. However, these are dependent on the learned data. To combine the performance and robustness of both types of modeling a hybrid application of data-driven and physical models is developed in this paper as a grey box model for the exhaust emission prediction of a commercial vehicle diesel engine.
Technical Paper

Comparison and Evaluation of a New Innovative Drive Concept for the Air Conditioning Compressor of Electric Vehicles

2015-01-14
2015-26-0045
The development of energy efficient air conditioning systems for electric vehicles is an ever increasing challenge, because the cooling as well as the heating of the passenger compartment reduces the cruising range dramatically. Electric cars are usually equipped with a scroll compressor and a separate electric motor with appropriate power electronics. However, this solution is critical in terms of the installation space, the weight and also the costs. Therefore, an innovative and energy efficient drivetrain structure for electric vehicles was developed, which integrates the motor of the A/C-compressor directly into the drivetrain. Thus it is possible to switch off the compressor motor and to use the main motor for the drive of the compressor at certain driving situations. As a result, the operating point of the main motor can be shifted to a better efficiency.
Technical Paper

Electrification and Automation of Manual Gearbox Technology to Reduce Fuel Consumption and CO2-Emissions of Passenger Cars

2019-01-09
2019-26-0140
To meet the targets of Indian future emission legislation, an electrification and automation of today’s manual transmission technology is necessary. For this reason, IAV invented an electrified automated transmission family, based on well-known manual transmission technology. This low-cost automated manual transmission (AMT) approach is equipped with a 48 V electric machine and can be used as pure electric or hybrid drivetrain. Furthermore, it is possible to realize power shifts by using just one dry friction element. A small number of standard components combined with a low voltage electric machine and an electromechanical actuation system is sufficient to create a maximum of flexibility to meet future emission fleet targets, without having the disadvantageous high costs for a high-voltage electric system. To detect the optimal powertrain configuration, IAV used a unique advance development tool called Powertrain Synthesis.
Technical Paper

Model-Based Energy Consumption Optimization of a Twin Battery Concept Combining Liquid and Solid-State Electrolyte Cells

2023-08-28
2023-24-0154
The majority of powertrain types considered important contributors to achieving the CO2 targets in the transportation sector employ a battery as an energy storage device. The need for batteries is hence expected to grow drastically with increasing market share of CO2-optimized powertrain concepts. The resulting huge pressure on the development of future electrochemical energy storage systems necessitates the application of advanced methodologies enabling a fast and cost-efficient concept definition and optimization process. This paper presents a model-based methodology for the optimization of BEV thermal management concept layouts and operation strategies targeting minimized energy consumption. Starting at the vehicle level, the proposed methodology combines appropriate representations of all primary powertrain components with 1D cooling and refrigerant circuit models and focuses on their interaction with the battery chemistry.
X