Refine Your Search

Topic

Search Results

Journal Article

Design and Thermal Analysis of a Passive Thermal Management System Using Composite Phase Change Material for Rectangular Power Batteries

2015-04-14
2015-01-0254
A passive thermal management system (TMS) using composite phase change material (PCM) for large-capacity, rectangular lithium-ion batteries is designed. A battery module consisting of six Li-ion cells connected in series was investigated as a basic unit. The passive TMS for the module has three configurations according to the contact area between cells and the composite PCM, i.e., surrounding, front-contacted and side-contacted schemes. Firstly, heat generation rate of the battery cell was calculated using the Bernardi equation based on experimentally measured heat source terms (i.e. the internal resistance and the entropy coefficient). Physical and thermal properties such as density, phase change temperature, latent heat and thermal conductivity of the composite PCM were also obtained by experimental methods. Thereafter, thermal response of the battery modules with the three TMS configurations was simulated using 3D finite element analysis (FEA) modeling in ANSYS Fluent.
Technical Paper

3-Dimensional Numerical Simulation on CuO Nanofluids as Heat Transfer Medium for Diesel Engine Cooling System

2020-04-14
2020-01-1109
CuO-water nanofluids was utilized as heat transfer medium in the cooling system of the diesel engine. By using CFD-Fluent software, for 0.5%, 1%, 3% and 5% mass concentration of nanofluids, 3-dimensional numerical simulation about flow and heat transfer process in the cooling system of engine was actualized. According to stochastic particle tracking in turbulent flow, for solid-liquid two phase flow discrete phase, the moving track of nanoparticles was traced. By this way, for CuO nanoparticles of different mass concentration nanofliuds in the cooling jacket of diesel engine, the results of the concentration distribution, velocity distribution, internal energy variation, resident time, total heat transfer and variation of total pressure reduction between inlet and outlet were ascertained.
Technical Paper

In Cycle Pre-Ignition Diagnosis and Super-Knock Suppression by Employing Ion Current in a GDI Boosted Engine

2020-04-14
2020-01-1148
In this paper, a low-speed pre-ignition (LSPI) diagnostic strategy is designed based on the ion current signal. Novel diagnostic and re-injection strategies are proposed to suppress super-knock induced by pre-ignition within the detected combustion cycle. A parallel controller system that integrates a regular engine control unit (ECU) and CompactRIO (cRIO) from National Instruments (NI) is employed. Based on this system, the diagnostic and suppression strategy can be implemented without any adaptions to the regular ECU. Experiments are conducted on a 1.5-liter four-cylinder, turbocharged, direct-injected gasoline engine. The experimental results show two kinds of pre-ignition, one occurs spontaneously, and the other is induced by carbon deposits. Carbon deposits on the spark plug can strongly interfere with the ion current signal. By applying the ion current signal, approximately 14.3% of spontaneous and 90% of carbon induced pre-ignition cycles can be detected.
Journal Article

Lubrication Analysis of Floating Ring Bearings Considering Floating Ring Heat Transfer

2016-04-05
2016-01-0485
Turbochargers improve performance in internal combustion engines. Due to low production costs, TC assemblies are supported on floating ring bearings. In current lubrication analysis of floating ring bearing, inner and outer oil film are usually supposed to be adiabatic. The heat generated by frictional power is carried out by the lubricant flow. In reality, under real operating conditions, there existed heat transfer between the inner and outer film. In this paper, the lubrication performance of floating ring bearing when considering heat transfer between inner film and outer film is studied. The lubrication model of the floating ring is established and the heat transferred through the ring between the inner and outer film is calculated. The calculation results show that heat flow between the inner and outer film under different outer film eccentricity ratio and rotate ratio has a large difference.
Technical Paper

Research on Fast Filling Strategy of Large Capacity On-Board Hydrogen Storage Tank for Highway Passenger Cars

2020-04-14
2020-01-0855
In order to study the fast filling problem of large-capacity on-board hydrogen storage tank for highway passenger cars, a computational fluid dynamics (CFD) simulation model of 134L large-capacity hydrogen storage tank was established. By simulating different pre-cooling temperatures and mass flow rates, the temperature distribution and thermal transmission in the tank were observed. Due to the large ratio of length to diameter of the hydrogen tank, the temperature distribution is extremely uneven during the whole filling process, and the high temperature area is mainly concentrated in the tank tail. And the heat transfer between the gas and the tank wall is not obvious under the low and constant mass flow rate. The temperature rise process during the whole filling process under different mass flow conditions was simulated to satisfy the highest safe temperature limit.
Technical Paper

Investigation of the Operating Conditions on the Water and Thermal Management for a Polymer Electrolyte Membrane Fuel Cell by One-Dimensional Model

2020-04-14
2020-01-0856
Water and thermal management is an essential issue that influences performance and durability of a polymer electrolyte membrane fuel cell (PEMFC). Water content in membrane decides its ionic conductivity and membrane swelling favors the ionic conductivity, resulting in decreases in the membrane’s ohmic resistance and improvement in the output voltage. However, if excessive liquid water can’t be removed out of cell quickly, it will fill in the pores of catalyst layer (CL) and gas diffusion layer (GDL) then flooding may occur. It is essential to keep the water content in membrane at a proper level. In this work, a transient isothermal one-dimensional model is developed to investigate effects of the relative humidity of inlet gas and cell temperature on performance of a PEMFC.
Technical Paper

Simulation and Parametric Analysis of Battery Thermal Management System Using Phase Change Material

2020-04-14
2020-01-0866
The thermophysical parameters and amount of composite phase change materials (PCMs) have decisive influence on the thermal control effects of thermal management systems (TMSs). At the same time, the various thermophysical parameters of the composite PCM are interrelated. For example, increasing the thermal conductivity is bound to mean a decrease in the latent heat of phase change, so a balance needs to be achieved between these parameters. In this paper, a prismatic LiFePO4 battery cell cooled by composite PCM is comprehensively analyzed by changing the phase change temperature, thermal conductivity and amount of composite PCM. The influence of the composite PCM parameters on the cooling and temperature homogenization effect of the TMS is analyzed. which can give useful guide to the preparation of composite PCMs and design of the heat transfer enhancement methods for TMSs.
Technical Paper

Investigation of Radiation and Conjugate Heat Transfers for Vehicle Underbody

2008-06-23
2008-01-1819
A computational study was conducted in order to characterize the heat transfers in a sedan vehicle underbody and the exhaust system. A steady-state analysis with consideration for both the radiation and conjugate heat transfers was undertaken using the High-Reynolds formulation of the k-epsilon turbulence model with standard wall function and the DO model for the radiation heat transfer. All three mechanisms of heat transfer, i.e., convection, conduction, and radiation, were included in the analysis. The convective heat transfer due to turbulent fluid motion was modeled with the assumption of constant turbulent Prandtl number; and heat conduction was solved directly for both fluid and solid.
Technical Paper

Thermal Management of Power Batteries for Electric Vehicles Using Phase Change Materials: A Review

2016-04-05
2016-01-1204
As one of the most crucial components in electric vehicles, power batteries generate abundant heat during charging and discharging processes. Thermal management system (TMS), which is designed to keep the battery cells within an optimum temperature range and to maintain an even temperature distribution from cell to cell, is vital for the high efficiency, long calendar life and reliable safety of these power batteries. With the desirable features of low system complexity, light weight, high energy efficiency and good battery thermal uniformity, thermal management using composite phase change materials (PCMs) has drawn great attention in the past fifteen years. In the hope of supplying helpful guidelines for the design of the PCM-based TMSs, this work begins with the summarization of the most commonly applied heat transfer enhancement methods (i.e., the use of thermally conductive particles, metal fin, expanded graphite matrix and metal foam) for PCMs by different researchers.
Technical Paper

Effect of EGR Temperature on PFI Gasoline Engine Combustion and Emissions

2017-10-08
2017-01-2235
In order to investigate the impacts of recirculated exhaust gas temperature on gasoline engine combustion and emissions, an experimental study has been conducted on a turbocharged PFI gasoline engine. The engine was equipped with a high pressure cooled EGR system, in which different EGR temperatures were realized by using different EGR coolants. The engine ran at 2000 r/min and 3000 r/min, and the BMEP varied from 0.2MPa to 1.0MPa with the step of 0.2MPa. At each case, there were three conditions: 0% EGR, 10% LT-EGR, 10% HT-EGR. The results indicated that LT-EGR had a longer combustion duration compared with HT-EGR. When BMEP was 1.0 MPa, CA50 of HT-EGR advanced about 5oCA. However, CA50 of LT-EGR could still keep steady and in appropriate range, which guaranteed good combustion efficiency. Besides, LT-EGR had lower exhaust gas temperature, which could help to suppress knock. And its lower exhaust gas temperature could reduce heat loss. These contributed to fuel consumption reduction.
Technical Paper

In-Cycle Knocking Detection and Feedback Control Based on In-Cylinder Pressure and Ion Current Signal in a GDI Engine

2016-04-05
2016-01-0816
Due to much higher pressure and pressure rising rate, knocking is always of potential hazards causing damages in the engine and high NOX emissions. Therefore, the researchers have focused on knocking diagnosis and control for many years. However, there is still lack of fast response sensor detecting in-cycle knocking. Until now, the feedback control based on knocking sensor normally adjusts the injection and ignition parameters of the following cycles after knocking appears. Thus in-cycle knocking feedback control which requires a predictive combustion signal is still hard to see. Ion current signal is feasible for real-time in-cylinder combustion detection, and can be employed for misfiring and knocking detection. Based on incylinder pressure and ion current signals, the in-cycle knocking feedback control is investigated in this research. The 2nd-order differential of in-cylinder pressure, which means the response time of pressure rising rate dPR, is employed for knocking prediction.
Technical Paper

Knock and Pre-Ignition Detection Using Ion Current Signal on a Boosted Gasoline Engine

2017-03-28
2017-01-0792
In order to meet the ever more stringent demands on the CO2 emission reduction, downsized modern gasoline engine with highly boosted turbo charger meets new challenges such as super knock and pre-ignition, which will influence the engine combustion efficiency, smooth operation and even cause mechanical failure. A spark plug type ion current detection sensor was used in a 1.8L turbo charged gasoline engine. The ion-current wave signal differed greatly under different engine operating conditions such as without knock, with knock of different knock intensities. The frequency spectrum of ion-current was also studied, by the method of discrete Fourier transform (DFT). In knocking cycles, there were fluctuations of frequency 8-13 kHz both in the combustion pressure signal and in the ion current signal, proving the existence of knock information.
Technical Paper

Experiments of Methanol-Gasoline SI Engine Performance and Simulation of Flexible Fuel Characteristic Field

2018-04-03
2018-01-0927
Due to the oil crisis and the requirements of energy saving and emission reduction, the research of alternative energy sources for sustainable development has made good progress. Methanol has proven to be a very suitable alternative clean fuel. Compared with gasoline, methanol has a wide range of source and the higher oxygen content and octane number and combustion efficiency, which are beneficial for the engine performance. The effect of different proportions of methanol-gasoline mixed fuel on the performance of SI engine was studied experimentally (lower proportion and higher proportion). It was found that the engine power performance, fuel economy and exhaust emissions were related to the methanol ratio under different operating conditions. In order to adapt to different operating conditions to improve the performance of methanol-gasoline engine, an on-board flexible fuel mixed system was proposed.
Technical Paper

Reducing Part Load Pumping Loss and Improving Thermal Efficiency through High Compression Ratio Over-Expanded Cycle

2013-04-08
2013-01-1744
In vehicle application, most of time gasoline engines are part load operated, especially in city traffic, part load operation covers most common operation situations, however part load performances deteriorate due to pumping losses and low thermal efficiency. Many different technologies have been applied to improve part load performances. One of them is to adopt over-expanded (Atkinson/Miller) cycle, which uses late/early intake valve closing (LIVC/EIVC) to reduce pumping losses in part load operation. But over-expanded cycle has an intrinsic drawback in that combustion performance deteriorates due to the decline in the effective compression ratio (CR). Combining with high geometry CR may be an ideal solution, however there is a trade-off between maintaining a high CR for good part load fuel consumption and maintaining optimal combustion phasing at higher load.
Technical Paper

Experimental Study on Diesel Spray Characteristics at Different Altitudes

2018-04-03
2018-01-0308
In this study, effects of altitude on free diesel spray morphology, macroscopic spray characteristics and air-fuel mixing process were investigated. The diesel spray visualization experiment using high-speed photography was performed in a constant volume chamber which reproduced the injection diesel-like thermodynamic conditions of a heavy-duty turbocharged diesel engine operating at sea level and 1000 m, 2000 m, 3000 m and 4500 m above sea level. The results showed that the spray morphology became narrower and longer at higher altitude, and small vortex-like structures were observed on the downstream spray periphery. Spray penetration increased and spray angle decreased with increasing altitude. At altitudes of 0 m, 1000 m, 2000 m, 3000 m and 4500 m, the spray penetration at 1.45 ms after start of injection (ASOI) were 79.54 mm, 80.51 mm, 81.49 mm, 83.29 mm and 88.92 mm respectively, and the spray angle were 10.9°, 10.8°, 10.7°, 10.4°and 9.8° respectively.
Technical Paper

Design and Optimization of an SUV Engine Compartment Bottom Shield Based on Kriging Interpolation and Multi-Island Genetic Algorithm

2022-03-29
2022-01-0172
Engine compartment thermal management can achieve energy saving and emission reduction. The structural design of the components in the engine compartment affects the thermal fluid flow performance, which in turn affects the thermal management performance. In this paper, based on the phenomenon that the surface of the parts in the engine compartment is abnormally high due to design defects of an SUV engine compartment bottom shield, the engine compartment is modeled and analyzed by CFD using the software STAR-CCM+. It is not conducive to the heat dissipation, so the bottom shield needs to be redesigned. To redesign the shape of the bottom shield, four dimensions and one coordinate value were selected as the design parameters, and the oil pan maximum surface temperature was selected as the optimization target. The Latin hypercube sampling method was used to sample the space uniformly, and the experimental design plan was constructed and simulated.
Technical Paper

Design Optimization of Geometric Parameters of Radiator Based on Cooling Module

2022-03-29
2022-01-0175
Improving the heat dissipation performance of the engine radiator in the real working environment is of great significance to the cooling of the engines. The purpose of this paper is to study the influence of the radiator’s geometric parameters on its heat dissipation performance in the cooling module environment and optimize the geometric parameters to improve the heat dissipation performance of the radiator. Based on the performance data obtained from relevant component tests and the engine thermal balance test, the simulation model of the engine thermal management system is established, and the reliability of the model is verified. The heat dissipation performances of the single radiator and the radiator in the cooling module are compared by using the validated model.
Technical Paper

Optimal Analysis of Layout Parameters of SUV Engine Compartment Parts Based on Orthogonal Design

2022-03-29
2022-01-0184
The layout of component in the engine compartment affects the fluid flow performance, thereby affects the thermal management performance. Based on the fluid flow performance in the engine compartment of an SUV, this paper proposes local optimization plans of the cooling module—moving downward the oil cooler and forward the intercooler, tilting an angle of the cooling module and shifting the fan. This paper took the fan center temperature as the optimization goal and set three levels for the four factors. It was found that the deviation of the fan has the most significant impact on fan center temperature among four factors. Then we discovered that the interaction between the factors has a significant impact on the air intake volume of the cooling module.
Technical Paper

Understanding the Transient Behavior and Consistency Evolution of PEMFC from the Perspective of Temperature

2022-03-29
2022-01-0189
The temperature of proton exchange membrane fuel cell (PEMFC) is the key factor restricting fuel cell’s performance. A deep understanding of temperature on stack voltage consistency and transient characteristics is necessary for improving the output performance of fuel cell. In this paper, the variation trend of consistency and transient characteristics of 20kW PEMFC stack at different temperatures is studied by experiment. In consistency, the amplitude of voltage changes and voltage difference (voltage coefficient variation σV) under different thermal loading conditions is examined. In transient characteristics, discussing the trends of transient voltage at different thermal loading. As the result, once the stack temperature increases from 65 °C to 70 °C, the stack performance and dynamic response are significantly improved, which may be caused by the rise in temperature promoting the establishment of the internal quality transmission channel.
Journal Article

Performance Optimization Using ANN-SA Approach for VVA System in Diesel Engine

2022-03-29
2022-01-0628
Diesel engine is vital in the industry for its characteristics of low fuel consumption, high-torque, reliability, and durability. Existing diesel engine technology has reached the upper limit. It is difficult to break through the fuel consumption and emission of diesel engines. VVA (Variable Valve Actuation) is a new technology in the field of the diesel engines. In this paper, GT-Suite and ANN (artificial neural network) model are established based on engine experimental data and DoE simulation results. By inputting Intake Valve Opening crake angle (IVO), Intake Valve Angle Multiplier (IVAM) and Exhaust Valve Angle Multiplier (EVAM) into the ANN Model, and by using SA (simulated annealing algorithm), the optimized results of intake and exhaust valve lift under the target conditions are obtained.
X