Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

The Disappearance of Ethylene, Propylene, n-Butane, and 1-Butane in Spark-Ignition Engine Exhaust

1970-02-01
700472
Ethylene, propylene, n-butane, and 1-butene, which make up a large portion of the photochemically reactive hydrocarbons in automobile exhaust, were reacted individually and as a mixture in a turbulent flow, heated reaction tube made of mild steel. Methods of predicting the total hydrocarbon disappearance by use of a general empirical equation are presented. Techniques for using hydrocarbon composition and carbon monoxide data to predict exhaust photochemical reactivity and CO concentration from total hydrocarbon disappearance correlations are suggested. Results show that total hydrocarbon reaction was generally strongly dependent on temperature and on oxygen concentration between 1% and 5%, and was less dependent on initial hydrocarbon concentration. Gas Chromatograph data showed that during certain individual hydrocarbon reactions, the formation of other photochemically reactive hydrocarbons could increase smog-forming potential despite a decreasing total hydrocarbon concentration.
Technical Paper

An Experimental Determination of the Instantaneous Potential Radiant Heat Transfer Within an Operating Diesel Engine

1972-02-01
720022
An instrument was developed to measure absolute monochromatic infrared emission rates within an operating diesel engine. The instrument and data reduction system were developed for use in obtaining potential instantaneous rates of radiant heat transfer within an operating engine. Data are presented for variations of: engine speed, fuel-air ratio, fuel injection timing, intake air pressure, fuel injector nozzle spray patterns, fuel cetane numbers, fuel family, and fuel additives (tetraeythl lead and amyl nitrate). Also presented is an empirical correlation for instantaneous radiant heat transfer rates and some conclusions regarding radiant emission sources within the engine and their relationships to combustion processes.
Technical Paper

Heat Transfer Rates at Gas-Wall Interfaces in Motored Piston Engine

1973-02-01
730632
Instantaneous heat transfer rates at the interface of the working gas and the walls of a motored engine were studied. This paper details the influence on heat fluxes of engine speed, compression ratio, intake pressure, swirl ratio, location on the cylinder head surface, and the shape of the piston top. Equations are given to show the method of calculation used in deriving the data on heat transfer rates.
Technical Paper

Spark Ignition Engine Operation and Design for Minimum Exhaust Emission

1966-02-01
660405
The purpose of the tests conducted on a single-cylinder laboratory engine was to determine the mechanism of combustion that affect exhaust emissions and the relationship of those mechanisms to engine design and operating variables. For the engine used in this study, the exhaust emissions were found to have the following dependence on various engine variables. Hydrocarbon emission was reduced by lean operation, increased manifold pressure, retarded spark, increased exhaust temperature, increased coolant temperature, increased exhaust back pressure, and decreased compression ratio. Carbon monoxide emission was affected by air-fuel ratio and premixing the charge. Oxides of nitrogen (NO + NO2 is called NOx) emission is primarily a function of the O2 available and the peak temperature attained during the cycle. Decreased manifold pressure and retarded spark decrease NOx emission. Hydrocarbons were found to react to some extent in the exhaust port and exhaust system.
Technical Paper

Effects of Deposit Properties on Volumetric Efficiency, Heat Transfer, and Preignition in Internal Combustion Engines

1966-02-01
660130
Digital computer methods were used to investigate the behavior of engine operating characteristics with a time-varying gas-film heat-transfer coefficient and gradual buildup of combustion-chamber deposits. Simulated engine runs were made with a “clean” engine having different wall materials and operating at different engine speeds as a basis for comparison. From the data calculated, heat transfer rates were established and inferences drawn regarding trends of detonation, preignition, and volumetric efficiency during the deposit buildup period. It was found that, while thermal resistance (x/k)d of the deposit layer is the most important parameter, a secondary parameter of interest is the thermal penetration, , in comparing the effects of deposits of different properties.
Technical Paper

The Reaction of Ethane in Spark Ignition Engine Exhaust Gas

1970-02-01
700471
This paper describes a method for studying reactions of hydrocarbons in S.I. engine exhaust gases. The reaction of ethane is described using an Arrhenius model (experimentally E = 86,500 cal/mole) for the rate of ethane diappearance and empirical correlations for distributions of the products carbon monoxide, ethylene, formaldehyde, methane, acetylene, and propane as a function of the fraction of ethane reacted. The results show that the nature of partial oxidation products from a nonreactive hydrocarbon may be less desirable from an air pollution viewpoint than the initial hydrocarbon.
Technical Paper

Fuel - Engine Research in Universities

1968-02-01
680508
The reasons for conducting research in a university are presented and discussed. It is concluded that fuel-engine studies are compatible with these reasons and therefore are well suited for university research. Past studies in this field are summarized and unanswered questions and future topics suitable for university investigation are suggested. Included in the topics discussed are: instrumentation, thermodynamic description of working fluids, fuel vaporization and atomization, combustion, and instantaneous heat transfer and mass flow rates. The steps that need to be taken to ensure continuing university interest in fuel-engine studies are presented.
Technical Paper

The Effects of Knock on the Hydrocarbon Emissions of a Spark-Ignition Engine

1969-02-01
690085
To determine the effects of knock in a spark-ignition, single-cylinder engine with cooled exhaust upon the exhaust composition, exhaust products (CO, CO2, and total hydrocarbons) were measured by non-dispersive infrared analyzers (NDIRA) and by a flame ionization detector (FID). Individual hydrocarbons were separated on a gas-liquid chromatograph. In fuel-rich mixtures, the FID indicated noticible decreases in the hydrocarbon concentrations in the presence of knock. The NDIRA did not indicate a decrease in the hydrocarbons at knock of lower intensities but showed decreases in hydrocarbons at knock of higher intensities. Chromatograms indicated a preferential decreases in acetylene at the time of knock, causing different responses at lower intensities. In fuel-lean mixtures, no apparent effect of knock on the hydrocarbons was indicated.
Technical Paper

Simulation of a Crankcase Scavenged, Two-Stroke, SI Engine and Comparisons with Experimental Data

1969-02-01
690135
A detailed mathematical model of the thermodynamic events of a crankcase scavenged, two-stroke, SI engine is described. The engine is divided into three thermodynamic systems: the cylinder gases, the crankcase gases, and the inlet system gases. Energy balances, mass continuity equations, the ideal gas law, and thermodynamic property relationships are combined to give a set of coupled ordinary differential equations which describe the thermodynamic states encountered by the systems of the engine during one cycle of operation. A computer program is used to integrate the equations, starting with estimated initial thermodynamic conditions and estimated metal surface temperatures. The program iterates the cycle, adjusting the initial estimates, until the final conditions agree with the beginning conditions, that is, until a cycle results.
Technical Paper

The Development and Evaluation of an Electronic Indicated Horsepower Meter

1969-02-01
690181
A complete electronic system for accurately and continuously measuring the indicated power of a reciprocating engine is presented in this paper. This includes an analog switching technique for separating the pumping power of a four-stroke cycle engine from the net cycle output. An analysis and evaluation of the individual components and circuits composing the complete instrument is made to determine the accuracy and limitations of the system and techniques used. The measurement of cylinder pressure, the weakest link in the entire system, is analyzed in detail to determine the pressure measuring requirements for the measurement of indicated power and the ability of some commercially available analog pressure transducers to meet these requirements. Data from a single cylinder, CFR, spark ignition engine are presented and used both as a means of evaluating the instrument and pressure transducers as well as to supply information on engine friction.
Technical Paper

Experimental Instantaneous Heat Fluxes in a Diesel Engine and Their Correlation

1969-02-01
690464
By the use of surface thermocouples to measure instantaneous temperatures, the instantaneous heat fluxes are calculated at several positions on the cylinder head and sleeve of a direct injection diesel engine for both motored and fired operation. Existing correlations are shown to be unable to predict these data. An analysis of convective heat transfer in the engine leads to a boundary layer model which adequately correlates the data for motored operation. The extension of this motored correlation to fired operation demonstrates the need for instantaneous local gas velocity and temperature data.
Technical Paper

An In Situ Determination of the Thermal Properties of Gombustion-Chamber Deposits

1982-02-01
820071
A technique for making a radiometric measurement of the deposit surface temperature in a methane-fired engine was developed. The wavelength region between 3.5 and 4.1 μm was investigated. It was determined that while the combustion gases were relatively transparent, the surface temperature measurements would contain some gas radiation. A method of averaging the measurements of many cycles and correcting these data for the gas radiation was developed. Time-averaged surface temperature was used in a steady-state heat transfer analysis to determine deposit thermal conductivity. Deposit thermal diffusivity was determined from a transient experiment in which the engine’s ignition system was turned off and the cooling response of the deposit and wall were measured.
Technical Paper

A Spark Ignition Engine with an In-Cylinder Thermal Reactor

1973-02-01
730634
This paper describes a method and apparatus intended to minimize hydrocarbons (HC), carbon monoxide (CO), and nitric oxide (NO) in spark ignition engine exhaust by utilizing the unused displacement of the engine at part loads as an internal thermal reactor. The method used is to induct exhaust gas plus air into one portion of the cylinder and unthrottled fuel-air charge into the balance. The fuel-air charge is rich to minimize NO formation, but, as a result, the products of combustion contain HC and CO. Air is added to these products before re-induction to provide additional oxygen to complete the oxidation which is promoted by the high pressures and temperatures of compression and combustion. Load control is achieved by varying the relative amounts of fuel-air charge and recirculated exhaust. Experimentally, it was shown that the necessary stratification existed until the spark occurred but not thereafter.
Technical Paper

Some Problem Areas in Engine Simulation

1971-02-01
710172
Problem areas in engine simulation where the required information is lacking are discussed. The need for improved heat transfer, combustion, friction, and turbocharger models is discussed as are instrumentation needs for measurements of accurate pressure, radiant heat transfer, time-varying cylinder velocities, and instantaneous mass flow rates.
Technical Paper

A Resistance Thermometer for Engine Compression Temperatures

1963-01-01
630128
Fine-wire resistance thermometers were used to measure compression gas temperatures in a motoring (nonfiring) cycle CFR engine. Temperature versus crankangle curves were obtained for the compression and expansion strokes by means of tungsten wires ranging in diameter from 0.15–1.00 mils and at speeds from 600–1800 rpm. The results were compared with the infrared pyrometer; the peak temperature and peak crankangle lags were determined as a function of the wire diameter and engine speed. Attempts to evaluate the instantaneous energy balance around the wire resulted in a negative heat transfer coefficient, for which no current satisfactory explanation is available, although other observers have reported similar phenomena. The tungsten resistance thermometer is simple to build, easy to install, and requires no modification of the engine block for use during motoring. Thus, it is suitable for comparing the compression temperatures of different design engines.
Technical Paper

The Radiant and Convective Components of Diesel Engine Heat Transfer

1963-01-01
630148
The ratio of two temperature gradients across the combustion-chamber wall in a diesel engine is used to provide a heat flow ratio showing the radiant heat transfer as a per cent of local total heat transfer. The temperature gradients were obtained with a thermocouple junction on each side of the combustion-chamber wall. The first temperature gradient was obtained by covering the thermocouple at the cylinder gas-wall interface with a thin sapphire window, while the second was obtained without the window. Results show that the time-average radiant heat transfer is of significant magnitude in a diesel engine, and is probably even more significant in heat transfer during combustion and expansion.
Technical Paper

Droplet Vaporization Under Pressure on a Hot Surface

1963-01-01
630149
Life histories of droplets evaporating on a hot plate under pressure were obtained. The curves are similar to those obtained by one investigator at atmospheric pressure but are displaced to higher temperatures at higher pressures. Similarities between boiling heat transfer and the life history curves are pointed out. Also, that the liquid will most probably reach critical pressure and temperature at temperatures existing inside an engine. The effects of reaching the critical temperature on heat transfer and on vaporization and diffusion are discussed.
X