Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Tire and Wheel Safety Issues

One of the most important safety critical components on cars, trucks, and aircraft is the pneumatic tire. Vehicle tires primarily control stopping distances on wet and dry roads or runways and strongly influence over-steer/under-steer behavior in handling maneuvers of cars and trucks. The inflated tire-wheel assembly also acts as a pressure vessel that releases a large amount of energy when catastrophically deflated. The tire can also serve as a fulcrum, both directly and indirectly, in contributing to vehicle rollover. This course covers these facets of tire safety phenomena.
Training / Education

The Tire as a Vehicle Component

The principal functions of the pneumatic tire are to generate driving, braking, and cornering forces while safely carrying the vehicle load and providing adequate levels of ride comfort. This course explains how tire forces and moments are generated under different operating and service conditions and, in turn, demonstrates how these forces and moments influence various vehicle responses such as braking, handling, ride, and high-speed performance. The content focuses on the fundamentals of tire behavior in automobiles, trucks, and farm tractors, but also includes experimental and empirical results, when necessary. 
Training / Education

DFMEA Overview, Application and Facilitation

This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. This course serves a dual purpose: it delves into fundamental DFMEA principles and their practical applications while also offering guidance on leading DFMEA teams. Participants will be introduced to crucial FMEA concepts, along with the theoretical foundations before exploring how to implement these concepts in their DFMEA endeavors. Often, the FMEA process can become a mere replication of past efforts, which poses risks for both organizations developing the products under scrutiny and the end-users.
Training / Education

ISO 26262 Tool Classification and Qualifications

As part of the release of ISO 26262 in 2011, requirements to establish confidence in the correct functioning of software tools used to develop safety-related automotive E/E systems came into effect. A decade later, there are plenty of experiences and lessons learned from applying these requirements in day-to-day engineering. However, implementing ISO 26262 tool classification and qualification remains a challenge for many automotive organizations and remains resource intensive.
Training / Education

Functional Safety for Automotive Professionals

ISO 26262 provides an internationally recognized reference for the development of safety-related automotive E/E systems. Developers of such systems need to understand and implement the standard’s requirements pertaining to system, hardware, and software development. This training class provides a systematic introduction to key concepts of ISO 26262 and their practical application, covering the concept phase including hazard analysis and risk assessment (HARA) as well as the subsequent system, hardware, and software development phases.
Training / Education

Next-Gen Digital R/D Paradigm Transformation - Model-Based Digital Systems Engineering (MBDSE)

This course is offered in China only. The course starts from the core concept of MBSE and primarily introduces the commercial setting of MBSE in industry practices. It covers a range of topics from conceptual clarity and mindset shifts to modeling strategies, aiming to build comprehensive end-to-end MBSE capabilities. I will present the specific industry practice of MBSE in fields such as aerospace and automotive, share insights on processes, methodologies, and toolchain strategies, among others. MBSE transforms the fragmented representation into traceable digital models by using a single data source model.
Training / Education

Guidance for Software Tool Qualification (DO-330)

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). Software technology for airborne and ground-based operations has changed and software development teams frequently need guidance on tools for the development, verification, transformation, testing, modification and control of software programs. Developed in support of DO-178C or CO-278A, RTCA DO-330 explains the process and objectives for qualifying software tools and facilitates the compliance of airborne products.
Training / Education

Methodology of Interactive Design and Study Using Driving Simulator

This course is offered in China only and presented in Mandarin Chinese. Driving simulator is a key component of automotive interactive design, which can provide objective data to support both the effectiveness of design and user experience. On the other hand, driving simulator and the design of its experiments are major challenges, as improper experiment design will lead to consequences such as failure in identifying designing errors of the interactive design itself.
Training / Education

Photogrammetry and Analysis of Digital Media

2024-08-28
Photographs and video recordings of vehicle crashes and accident sites are more prevalent than ever, with dash mounted cameras, surveillance footage, and personal cell phones now ubiquitous. The information contained in these pictures and videos provide critical information to understanding how crashes occurred, and  analyze physical evidence. This course teaches the theory and techniques for getting the most out of digital media, including correctly processing raw video and photographs, correcting for lens distortion, and using photogrammetric techniques to convert the information in digital media to usable scaled three-dimensional data.
Training / Education

Tire Forensics and Markings

2024-06-24
This course introduces basic tire mechanics, including tire construction components based on application type, required sidewall stamping in accordance with DoT/ECE regulations, tread patterns, regulatory and research testing on quality, tire inspections and basic tire failure identification. The course will provide you with information that you can use immediately on-the-job and apply to your own vehicle. This course is practical in nature and supplemented with samples and hands-on activities.
Training / Education

Machine Learning for Safety Experts

2024-06-11
The course will enable the learner to apply the fundamental principles behind safety of machine learning to a wide range of applications. The course guides learners through an appropriate selection of methods and tools tailored to the learner’s specific projects. With the acquired knowledge the learner will be able to shape the development and assessment of ML-based safety-related functions enabling their teams to leverage the power of advanced ML techniques without undermining safety.
Video

What If We Let Consumers Design PHEVs?

2011-11-04
Auto manufacturers have known and surveys confirm that consumers require short payback periods (2-4 years) for investments in fuel economy. Using societal discount rates, engineering-economic generally find substantial potential to increase fuel economy, cost-effectively. This phenomenon, often referred to as the ?energy paradox?, has been observed in nearly all consumers? choices of energy-using durable goods. Loss aversion, perhaps the most well established theory of behavioral economics, provides a compelling explanation. Engineering economic analyses generally overlook the fact that consumers? investments in fuel economy are not sure things but rather risky bets. Future energy prices, real world on-road fuel economy, and many other factors are uncertain. Loss aversion describes a fundamental human tendency to exaggerate the potential for loss relative to gain when faced with a risky bet. It provides a sufficient explanation for consumers?
Video

Advances of Virtual Testing and Hybrid Simulation in Automotive Performance and Durability Evaluation

2012-02-15
Moir� method is useful to measure the shape and the whole-field distributions of displacement and strain of structures. There are many kinds of moir� methods such as geometric moir� method, sampling moir� method, Fourier transform moir� method, moir� interferometry, shadow moir� method and moir� topography. Grating method analyzing directly deformation of a grating without any moir� fringe pattern is considered as an extended technique of moire method. Phase analysis of the moire fringe patterns and the grating patterns provides accurate measurements of shapes or displacement and strain distributions. Some applications of these moir� methods and grating methods to dynamic shape and strain distribution measurements of a rotating tire, sub-millimeter displacement measurements from long distance for landslide prediction, real-time shape measurements with micro-meter order accuracy, etc. are shown. Presenter Yoshiharu Morimoto, Moire Institute Inc.
Video

Technical Keynote: State-of-Art of Moire Method and Applications to Shape, Displacement and Strain Measurement

2011-11-17
Virtual testing is a method that simulates lab testing using multi-body dynamic analysis software. The main advantages of this approach include that the design can be evaluated before a prototype is available and virtual testing results can be easily validated by subsequent physical testing. The disadvantage is that accurate specimen models are sometimes hard to obtain since nonlinear components such as tires, bushings, dampers, and engine mounts are hard to model. Therefore, virtual testing accuracy varies significantly. The typical virtual rigs include tire and spindle coupled test rigs for full vehicle tests and multi axis shaker tables for component tests. Hybrid simulation combines physical and virtual components, inputs and constraints to create a composite simulation system. Hybrid simulation enables the hard to model components to be tested in the lab.
Video

Fault-Tree Generation for Embedded Software Implementing Dual-Path Checking

2011-11-17
Given the fast changing market demands, the growing complexity of features, the shorter time to market, and the design/development constraints, the need for efficient and effective verification and validation methods are becoming critical for vehicle manufacturers and suppliers. One such example is fault-tree analysis. While fault-tree analysis is an important hazard analysis/verification activity, the current process of translating design details (e.g., system level and software level) is manual. Current experience indicates that fault tree analysis involves both creative deductive thinking and more mechanical steps, which typically involve instantiating gates and events in fault trees following fixed patterns. Specifically for software fault tree analysis, a number of the development steps typically involve instantiating fixed patterns of gates and events based upon the structure of the code. In this work, we investigate a methodology to translate software programs to fault trees.
Video

Experience with Using Hardware-in-the-Loop Simulation for Validation of OBD in Powertrain Electronics Software

2011-12-05
These advanced checks have resulted in development of many new diagnostic monitors, of varying types, and a whole new internal software infrastructure to handle tracking, reporting, and self-verification of OBD related items. Due to this amplified complexity and the consequences surrounding a shortfall in meeting regulatory requirements, efficient and thorough validation of the OBD system in the powertrain control software is critical. Hardware-in-the-Loop (HIL) simulation provides the environment in which the needed efficiency and thoroughness for validating the OBD system can be achieved. A HIL simulation environment consisting of engine, aftertreatment, and basic vehicle models can be employed, providing the ability for software developers, calibration engineers, OBD experts, and test engineers to examine and validate both facets of OBD software: diagnostic monitors and diagnostic infrastructure (i.e., fault memory management).
Video

Blue Bird Propane Powered Vision School Bus

2012-04-10
Propane autogas, the world?s third most-used engine fuel, powers vehicles, transit buses, and now school buses. Blue Bird has recently launched the Next Generation Vision type C school bus, powered by a ROUSH CleanTech liquid propane autogas fuel system and a Ford 6.8L V10 engine. The bus reduces operating costs by up to 40%, greenhouse gas emissions by up to 24%, and maintains the factory horsepower, torque, and towing capacity ratings. Learn about how school districts are saving over $.30 / mile using this clean, domestically-produced fuel. Presenter Brian Carney, Roush CleanTech.
Video

Integrating Formal Model Checking with the RTEdge™ AADL Microkernel

2012-03-21
Edgewater Computer Systems Inc. product RTEdge Platform 1.2 is a software toolset supporting proof based engineering, implementation and deployment of software components, built using the RTEdge AADL Microkernel modeling subset. This is a small subset of the AADL component model and execution semantics, covering threads and thread-groups communicating solely through asynchronous event ports and through explicitly shared data ports. Threads behavior is expressed as state machines and dispatch run time semantics is encoded in a Run-time Executive, enforcing pre-emptive priority dispatch based on statically assigned event priorities, with ceiling priority protocol access to shared data. This simple AADL microkernel semantic core can support all dispatch policies, communication and synchronization mechanisms of a fully fledged AADL run time environment, permitting the systematic use of the RTEdge static analysis tools for AADL compliant software components.
Video

Certification of Engine Health Management Systems: Guidelines for Selecting Software Assurance Levels

2012-03-16
The use of Engine Health Management (EHM) systems has been growing steadily in both the civilian and the military aerospace sectors. Barring a few notable exceptions (such as certain temperature and thrust margin monitoring) regulatory authorities around the world have not required these systems to be certified in any way. This is changing rapidly. New airframes and engines are increasingly being designed with the assumption that EHM will be an integral part of the way customers will operate these assets. This leads to a need for better guidelines on how such systems should be certified. The SAE E-32 committee on Propulsion System Health Monitoring is leading an industry-wide effort to develop a set of guidelines for certifying EHM systems.
X