Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Fast Running Loading Methodology for Ground Vehicle Underbody Blast Events

2018-04-03
2018-01-0620
A full-system, end-to-end blast modeling and simulation of vehicle underbody buried blast events typically includes detailed modeling of soil, high explosive (HE) charge and air. The complex computations involved in these simulations take days to just capture the initial 50-millisecond blast-off phase, and in some cases, even weeks. The single most intricate step in the buried blast event simulation is in the modeling of the explosive loading on the underbody structure from the blast products; it is also one of the most computationally expensive steps of the simulation. Therefore, there is significant interest in the modeling and simulation community to develop various methodologies for fast running tools to run full simulation events in quicker turnarounds of time.
Technical Paper

Decomposition and Coordination to Support Tradespace Analysis for Ground Vehicle Systems

2022-03-29
2022-01-0370
Tradespace analysis is used to define the characteristics of the solution space for a vehicle design problem enabling decision-makers (DMs) to evaluate the risk-benefit posture of a vehicle design program. The tradespace itself is defined by a set of functional objectives defined by vehicle simulations and evaluating the performance of individual design solutions that are modeled by a set of input variables. Of special interest are efficient design solutions because their perfomance is Pareto meaning that none of their functional objective values can be improved without decaying the value of another objective. The functional objectives are derived from a combination of simulations to determine vehicle performance metrics and direct calculations using vehicle characteristics. The vehicle characteristics represent vendor specifications of vehicle subsystems representing various technologies.
Technical Paper

Implementation of Active & Passive Safety for Heavy Article Tilter and Positioner (HATP)

2019-01-09
2019-26-0003
Mobile heavy article tilter and positioner (HATP) is special purpose vehicle designed to level, articulate and positioning of very heavy load within the accuracy of arc minutes and in a stipulated time in fully auto mode. HATP system uses sophisticated electronic controller system to carry out required task in auto mode. This electronic controller system comprises of various types of electronic hardware, software, sensors and actuators. As this system is dealing with heavy load, any failure in any of subsystem of HATP can result into catastrophe. Therefore active and passive safety measure at various levels must be incorporated into system which firstly prevents the failure and reduce the effect of failure. The safety system for HATP system has been divided in three major levels: 1. Access level safety 2. Operational safety 3. Preventive safety. All three levels of safety is incorporated at appropriate subsystem based on Risk Priority Number (RPN) and failure mode effect analysis.
Technical Paper

Design, Synthesis and Analysis of Loader Bucket, Boom and Linkages for Amphibious Infantry Combat Vehicle

2019-10-11
2019-28-0124
Currently, for various military activities such as construction of bridges, digging trenches, construction of roads and clearing the area during landslides, separate unit of bulldozer for dozing operation and loader for loading operation is required. But the need is to develop a single unit which could perform both of these operations efficiently and simultaneously. The paper discusses about the development of dozer bucket mechanism as a single unit to perform dozing and loading operation and connected to the amphibious infantry combat vehicle. To develop the dozer bucket mechanism synthesis of mechanism (Linkages and Boom) has carried out and care has taken to fulfill the above stated functional requirement and satisfy the geometrical constraints. The synthesis of mechanism is done with the help of ‘CATIA’ software packages. The force calculation on various joints at the different position of mechanism has evaluated with the help of ’ADAMS’ software.
Research Report

Process Control for Defect Mitigation in Laser Powder Bed Fusion Additive Manufacturing

2023-05-15
EPR2023011
Success in metal additive manufacturing (AM) relies on the optimization of a large set of process parameters to achieve materials whose properties and performance meet design and safety requirements. Despite continuous improvements in the process over the years, the quality of AM parts remains a major concern for manufacturers. Today, researchers are starting to move from discrete geometry-dependent build parameters to continuously variable or dynamically changing parameters that are geometry- and scan-path aware. This approach has become known as “feedforward control.” Process Control for Defect Mitigation in Laser Powder Bed Fusion Additive Manufacturing discusses the origins of feedforward control, its early implementations in AM, the current state of the art, and a path forward to its broader adoption. Click here to access the full SAE EDGETM Research Report portfolio.
X