Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

Development of Response Surface Equations for High-Speed Civil Transport Takeoff and Landing Noise

1997-10-01
975570
As an element of a design optimization study of high speed civil transport (HSCT), response surface equations (RSEs) were developed with the goal of accurately predicting the sideline, takeoff, and approach noise levels for any combination of selected design variables. These RSEs were needed during vehicle synthesis to constrain the aircraft design to meet FAR 36, Stage 3 noise levels. Development of the RSEs was useful as an application of response surface methodology to a previously untested discipline. Noise levels were predicted using the Aircraft Noise Prediction Program (ANOPP), with additional corrections to account for inlet and exhaust duct lining, mixer-ejector nozzles, multiple fan stages, and wing reflection. The fan, jet, and airframe contributions were considered in the aircraft source noise prediction.
Technical Paper

A Comparative Assessment of High Speed Rotorcraft Concepts (HSRC): Reaction Driven Stopped Rotor/Wing Versus Variable Diameter Tiltrotor

1997-10-01
975548
The objective of this paper is to illustrate the methods and tools developed to size and synthesize a stopped rotor/wing vehicle using a reaction drive system, including how this design capability is incorporated into a sizing and synthesis tool, VASCOMP II. This new capability is used to design a vehicle capable of performing a V-22 escort mission, and a sized vehicle description with performance characteristics is presented. The resulting vehicle is then compared side-by-side to a variable diameter tiltrotor designed for the same mission. Results of this analysis indicate that the reaction-driven rotor concept holds promise relative to alternative concepts, but that the variable diameter tiltrotor has several inherent performance advantages. Additionally, the stopped rotor/wing needs considerably more development to reach maturity.
Technical Paper

Technology Impact Forecasting for a High Speed Civil Transport

1998-09-28
985547
This paper outlines a comprehensive, structured, and robust methodology for decision making in the early phases ofaircraft design. The proposed approach is referred to as the Technology Identification, Evaluation, and Selection (TIES) method. The seven-step process provides the decision maker/designer with an ability to easily assess and trade-off the impact of various technologies in the absence of sophisticated, time-consuming mathematical formulations. The method also provides a framework where technically feasible alternatives can be identified with accuracy and speed. This goal is achieved through the use of various probabilistic methods, such as Response Surface Methodology and Monte Carlo Simulations. Furthermore, structured and systematic techniques are utilized to identify possible concepts and evaluation criteria by which comparisons could be made.
Technical Paper

New Approaches to Conceptual and Preliminary Aircraft Design: A Comparative Assessment of a Neural Network Formulation and a Response Surface Methodology

1998-09-28
985509
This paper critically evaluates the use of Neural Networks (NNs) as metamodels for design applications. The specifics of implementing a NN approach are researched and discussed, including the type and architecture appropriate for design-related tasks, the processes of collecting training and validation data, and training the network, resulting in a sound process, which is described. This approach is then contrasted to the Response Surface Methodology (RSM). As illustrative problems, two equations to be approximated and a real-world problem from a Stability and Controls scenario, where it is desirable to predict the static longitudinal stability for a High Speed Civil Transport (HSCT) at takeoff, are presented. This research examines Response Surface Equations (RSEs) as Taylor series approximations, and explains their high performance as a proven approach to approximate functions that are known to be quadratic or near quadratic in nature.
Technical Paper

Implementation of a Physics-Based Decision-Making Framework for Evaluation of the Multidisciplinary Aircraft Uncertainty

2003-09-08
2003-01-3055
In today's business climate, aerospace companies are more than ever in need of rational methods and techniques that provide insights as to the best strategies which may be pursued for increased profitability and risk mitigation. However, the use of subjective, anecdotal decision-making remains prevalent due to the absence of analytical methods capable of capturing and forecasting future needs. Negotiations between airframe and engine manufacturers could benefit greatly from a structured environment that facilitates efficient, rational, decision-making. Creation of such an environment can be developed through a parametric physics-based, stochastic formulation that uses Response Surface Equations as meta-models to expedite the process.
Technical Paper

A Technique for Use of Gaussian Processes in Advanced Meta-Modeling

2003-09-08
2003-01-3051
Current robust design methods rely heavily on meta-modeling techniques to reduce the total computational effort of probabilistic explorations to a combinatorially manageable size. Historically most of these meta-models were in the form of Response Surface Equations (RSE). Recently there has been interest in supplementing the RSE with techniques that better handle non-linear phenomena. One technique that has been identified is the Gaussian Process (GP). The GP has fewer initial assumptions when compared to the linear methods used by RSEs and, therefore, fewer limitations. The initial implementation and employment techniques proposed in current literature for use with the GP are barely modified versions of those used for RSEs. A better, more tailored technique needs to be developed to properly make use of the nature of the GP, and minimize the effect of some of its limitations. Such a technique would allow for rapid development of a reusable, computationally efficient and accurate GP.
Technical Paper

An Improved Procedure for Prediction of Drag Polars of a Joined Wing Concept Using Physics-Based Response Surface Methodology

2001-09-11
2001-01-3015
Creation and utilization of accurate drag polars is essential in the aircraft sizing and synthesis process. Existing sizing and synthesis codes are based on historical data and cannot capture the aerodynamics of a non-conventional aircraft at the conceptual design phase. The fidelity of the aerodynamic analysis should be enhanced to increase the designer’s confidence in the results. Hence, there is need for a physics-based approach to generate the drag polars of an aircraft lying outside the conventional realm. The deficiencies of the legacy codes should be removed and replaced with higher fidelity meta-model representations. This is facilitated with response surface methodology (RSM), which is a mathematical and statistical technique that is suited for the modeling and analysis of problems in which the responses, the drag coefficients in this case, are influenced by several variables. The geometric input variables are chosen so that they represent a multitude of configurations.
Technical Paper

Quiet, Clean, and Efficient, but Heavy - Concerns for Future Fuel Cell Powered Personal Air Vehicles

2006-08-30
2006-01-2436
Unfortunately, the promises of efficient, clean, quiet power that fuel cells offer are balanced by extremely low power densities and great infrastructure-related challenges. Studies by government and industry have investigated their feasibility for primary propulsion in light aircraft. These studies have produced mixed results but have tended to rely on integrating fuel cells into existing airframes, with respectably-performing light sport planes being turned into underpowered show planes with horribly compromised range and payload capabilities. Fuel cells today are in the earliest phases of technological development. As an aircraft propulsion system, they are as advanced as the Wright's reciprocating engine was a hundred years ago.
Technical Paper

Preliminary Assessment of the Economic Viability of a Family of Very Large Transport Configurations

1996-10-01
965516
A family of Very Large Transport (VLT) concepts were studied as an implementation of the affordability aspects of the Robust Design Simulation (RDS) methodology which is based on the Integrated Product and Process Development (IPPD) initiative that is sweeping through industry. The VLT is envisioned to be a high capacity (600 to 1000 passengers), long range (∼7500 nm), subsonic transport. Various configurations with different levels of technology were compared, based on affordability issues, to a Boeing 747-400 which is a current high capacity, long range transport. The varying technology levels prompted a need for an integration of a sizing/synthesis (FLOPS) code with an economics package (ALCCA). The integration enables a direct evaluation of the added technology on a configuration economic viability.
Technical Paper

An Assessment of a Reaction Driven Stopped Rotor/Wing Using Circulation Control in Forward Flight

1996-10-01
965612
The desire of achieving faster cruise speed for rotorcraft vehicles has been around since the inception of the helicopter. Many unconventional concepts have been considered and researched such as the advanced tilt rotor with canards, the tilt-wing, the folding tiltrotor, the coaxial propfan/folding tiltrotor, the variable diameter tiltrotor, and the stopped rotor/wing concept, in order to fulfill this goal. The most notable program which addressed the technology challenges of accomplishing a high speed civil transport mission is the High Speed Rotorcraft Concept (HSRC) program. Among the long list of potential configurations to fulfill the HSRC intended mission, the stopped rotor/wing is the least investigated due to the fact that the existing rotorcraft synthesis codes cannot handle this type of vehicle. In order to develop such a tool, a designer must understand the physics behind this unique concept.
Technical Paper

Program and Design Decisions in an Uncertain and Dynamic Market: Making Engineering Choices Matter

2005-10-03
2005-01-3433
The success of a modern, complex engineering program is inherently a dynamic economic exercise. Because of this it is not possible to fully grasp what decisions are important to the success of a program using only the typical static or “frozen” design methods and processes. This paper attempts to provide a basic understanding of these design processes and illustrate what they leave to be desired when used in a true market environment. Further, this paper illustrates a dynamic method using tools from engineering, management, and finance to overcome these weaknesses. The dynamic environment allows decision parameters and metrics to change, along with the potential for true competition. Furthermore, it allows the engineer to determine which design choices matter most to the creation of a successful program and how to make the most appropriate choices in the face of uncertainty.
Technical Paper

Supersonic Business Jet Design and Requirements Exploration using Multiobjective Interactive Genetic Algorithms

2005-10-03
2005-01-3398
Although market research has indicated that there is significant demand for a supersonic business aircraft, development of a feasible concept has proven difficult. Two factors contributing to this difficulty are the uncertain nature of the vehicle’s requirements and the fact that conventional design methods are inadequate to solve such non-traditional problems. This paper describes the application of a multiobjective genetic algorithm to the design space exploration of such a supersonic business jet. Results obtained using this method are presented, and give insight into the important decisions that must be made at the early stages of a design project.
Technical Paper

Technology Portfolio Assessments Using a Multi-Objective Genetic Algorithm

2004-11-02
2004-01-3144
This paper discusses the use of a Multi-Objective Genetic Algorithm to optimize a technology portfolio for a commercial transport. When incorporating technologies into a conceptual design, there are often multiple competing objectives that determine the benefits and costs of a certain portfolio. The set of designs that achieves the best values of these objectives will fall along a Pareto front that outlines the tradeoffs which will give the optimal design. Multi-Objective Genetic Algorithms determine the Pareto set by giving higher priority to dominant portfolios in the evolutionary optimization techniques of selection and reproduction. When determining the final Pareto optimal set it is important to ensure that only compatible portfolios of technologies are present.
Technical Paper

A Technique for Testing and Evaluation of Aircraft Flight Performance During Early Design Phases

1997-10-01
975541
A technique is proposed for examining complex behaviors in the “pilot - vehicle - operational conditions” system using an autonomous situational model of flight. The goal is to identify potentially critical flight situations in the system behavior early in the design process. An exhaustive set of flight scenarios can be constructed and modeled on a computer by the designer in accordance with test certification requirements or other inputs. Distinguishing features of the technique include the autonomy of experimentation (the pilot and a flight simulator are not involved) and easy planning and quick modeling of complex multi-factor flight cases. An example of mapping airworthiness requirements into formal scenarios is presented. Simulation results for various flight situations and aircraft types are also demonstrated.
Technical Paper

A Method for Technology Selection Based on Benefit, Available Schedule and Budget Resources

2000-10-10
2000-01-5563
The accepted paradigm in aerospace systems design was to design systems sequentially and iteratively to maximize performance based on minimum weight. The traditional paradigm does not work in the rapidly changing global environment. A paradigm shift from the norm of “design for performance” to “design for affordability and quality” has been occurring in recent decades to respond to the changing global environment. Observations were made regarding new tenets needed to bridge the gap from the old to the new. These tenets include new methods and techniques for designing complex systems due to uncertainty and mulit-dimensionality, consideration of the life cycle of the system, and the methods needed to assess breakthrough technologies to meet aggressive goals of the future. The Technology Identification, Evaluation, and Selection method was proposed as a possible solution to the paradigm shift.
Technical Paper

Use of Flight Simulation in Early Design: Formulation and Application of the Virtual Testing and Evaluation Methodology

2000-10-10
2000-01-5590
In current design practices, safety, operational and handling criteria are often overlooked until late design stages due to the difficulty in capturing such criteria early enough in the design cycle and in the presence of limited and uncertain knowledge. Virtual (flight) testing and evaluation, based on autonomous modeling and simulation, is proposed as a solution to this shortcoming. The methodology enables one to evaluate vehicle behavior in relatively complex situations through a series of specific flight scenarios. Bringing this methodology to conceptual design requires the creation of an automatic link between the design database and the autonomous flight simulation environment. This paper describes the creation of such a link and an implementation of the Virtual Testing and Evaluation methodology with the use of an advanced design concept.
Technical Paper

Development of Wing Structural Weight Equation for Active Aeroelastic Wing Technology

1999-10-19
1999-01-5640
A multidisciplinary design study considering the impact of Active Aeroelastic Wing (AAW) technology on the structural wing weight of a lightweight fighter concept is presented. The study incorporates multidisciplinary design optimization (MDO) and response surface methods to characterize wing weight as a function of wing geometry. The study involves the sizing of the wing box skins of several fighter configurations to minimum weight subject to static aeroelastic requirements. In addition, the MDO problem makes use of a new capability, trim optimization for redundant control surfaces, to accurately model AAW technology. The response surface methodology incorporates design of experiments, least squares regression, and makes use of the parametric definition of a structural finite element model and aerodynamic model to build response surface equations of wing weight as a function of wing geometric parameters for both AAW technology and conventional control technology.
Technical Paper

Method for the Exploration of Cause and Effect Links and Derivation of Causal Trees from Accident Reports

1999-04-13
1999-01-1433
The ultimate goal of knowledge-based aircraft design, pilot training and flight operations is to make flight safety an inherent, built-in feature of the flight vehicle, such as its aerodynamics, strength, economics and comfort are. Individual flight accidents and incidents may vary in terms of quantitative characteristics, circumstances, and other external details. However, their cause-and-effect patterns often reveal invariant structure or essential causal chains which may re-occur in the future for the same or other vehicle types. The identification of invariant logical patterns from flight accident reports, time-histories and other data sources is very important for enhancing flight safety at the level of the ‘pilot - vehicle -operational conditions’ system. The objective of this research project was to develop and assess a method for ‘mining’ knowledge of typical cause-and-effect patterns from flight accidents and incidents.
X