Refine Your Search

Topic

Author

Search Results

Journal Article

An Experimental Study on Relationship between Lubricating Oil Consumption and Cylinder Bore Deformation in Conventional Gasoline Engine

2009-04-20
2009-01-0195
It is well known that lubricating oil consumption (LOC) is much affected by the cylinder bore deformation occurring within internal combustion engines. There are few analytical reports, however, of this relationship within internal combustion engines in operation. This study was aimed at clarifying the relationship between cylinder bore deformation and LOC, using a conventional in-line four-cylinder gasoline engine. The rotary piston method developed by the author et al. was used to measure the cylinder bore deformation of the engine’s cylinder #3 and cylinder #4. In addition, the sulfur tracer method was applied to measure LOC of each cylinder. LOC was also measured by changing ring tension with a view to taking up for discussion how piston ring conforms to cylinder, and how such conformability affects LOC. Their measured results were such that the cylinder bore deformation was small in the low engine load area and large in the high engine load area.
Technical Paper

A Study of Decrease Oil Consumption for NSOR-Two-Ring Package Piston

1991-02-01
910435
Furuhama(1)* proposed the new two ring package consist of a pressure ring and a narrow single-rail oil ring (NSOR) in 1985. Number of studies(2) have been done for the purpose of reducing the oil consumption (OC) in this ring package. However, OC reduction problem has been still remaining to solve as only one serious problem of this ring package. The reasons of a larger OC in the new ring package than the conventional three ring has been hardly understood, considering the OC control ability on second ring in three ring package will not so large since the fact that the oil film thickness is thicker than that of the oil ring. In this study, the mechanism of OC increase in new ring package was found out at last, as a result, OC of new ring package piston was improved up to the same level of conventional three ring package piston.
Technical Paper

The Effect of Oil Ring Geometry on Oil Film Thickness in the Circumferential Direction of the Cylinder

1998-10-19
982578
This paper describes measurements of oil film thickness of piston ring packages which have different oil control rings. The oil film thickness measurements were taken at three points, namely, the piston thrust side, front side and rear side, by the Laser Induced Fluorescence Method(LIF). One of the main findings is that the oil film thickness on the thrust side varies greatly from cycle to cycle, while cyclic variations are smaller on the front and rear sides. This difference is due to the smaller inclination of the oil control rings on the front and rear sides, compared with that on the thrust side. It is also found that oil consumption has a good correlation with oil film thickness on the thrust side and that the thrust side oil film thickness becomes thinner as the oil ring becomes narrower.
Technical Paper

Variation of Piston Friction Force and Ring Lubricating Condition in a Diesel Engine with EGR

1998-10-19
982660
Exhaust-gas recirculation (EGR) causes the piston rings and cylinder liners of a Diesel engine to suffer abnormal wear on the sliding parts. The present study aimed at making clear such abnormal wear structurally by examining the state of lubrication of the piston with a floating liner method, observing directly a visualized cylinder and experimenting on a Diesel engine for wear. As a result, it was confirmed that soot in EGR gas would change a lot the characteristics of the piston friction force. There are two mechanisms: one directly enters the sliding surfaces, and the other enters the ring rear, applying more load to them. It was also confirmed that the level of wear on the piston ring would vary to a large extent as the state of lubrication changed.
Technical Paper

Part 3: A Study of Friction and Lubrication Behavior for Gasoline Piston Skirt Profile Concepts

2009-04-20
2009-01-0193
This paper deals with the friction performance results for various new concept piston skirt profiles. The program was conducted under the assumption that friction performance varies by the total amount of oil available at each crank angle in each stroke and the instantaneous distribution of the oil film over the piston skirt area. In previous papers [1,2] it was that lower friction designs would be expected to show higher skirt slap noise. This paper discusses the correlation between friction and skirt slap for each new concept profile design. Finally, this paper explains the friction reduction mechanism for the test samples for each stroke of the engine cycle by observing the skirt movement and oil lubrication pattern using a visualization engine.
Technical Paper

Power Cylinder System Friction and Weight Optimization in High Performance Gasoline Engines

2009-06-15
2009-01-1958
An ultra-lightweight piston and conrod without small end bush, combined with a ring pack designed for minimized friction is analyzed and demonstrated as an optimized power cylinder system in a high performance gasoline engine. Component and system analysis for optimizing the design, materials used and design features are reviewed, along with durability, NVH and friction testing results. Results are compared to other benchmark power cylinder system components for weight, performance and value.
Technical Paper

Improvement of Piston Lubrication in a Diesel Engine By Means of Cylinder Surface Roughness

2004-03-08
2004-01-0604
Aiming at the improvement in piston lubrication and the reduction of piston friction loss under this study, piston friction forces of cylinders with different surface roughness and treatment methods have been measured by means of a floating liner method, and the piston surface conditions have been also observed. As a result, it is found that the piston lubrication can be markedly improved by reducing the cylinder surface roughness. It is also verified that the deterioration in lubrication can be reduced even if some low viscosity oil is used, and the effect on the friction loss reduction becomes greater by reducing the piston surface roughness. On the other hand, it is found that many small vertical flaws are generated on the cylinder surface by reducing the surface roughness. In order to cope with this problem, etching and DLC (Diamond Like Carbon) coating have been tested as the surface treatments. As a result, it is confirmed that DLC coating is effective for the above.
Technical Paper

Effects of Lubricating Oil Supply on Reductions of Piston Slap Vibration and Piston Friction

2001-03-05
2001-01-0566
This study has been conducted aiming at reductions of piston slap noise and piston friction loss, and effects of lubricating oil supply between the piston skirt and cylinder on diesel engine have been verified through a series of experiments. Namely, lubricating oil was supplied forcibly into the piston skirt from outside of engine, and its effects on the cylinder block vibration, piston friction force, slap motion and oil consumption have been measured. As a result, it has been verified that the supply of a small amount of oil (6mL/min) to the piston skirt reduces about 50 % of the block vibration caused by the piston slap motion in idling operation, and about 20 % of the piston friction loss in full load operation. Furthermore it has verified without giving any significant adverse effect on oil consumption.
Technical Paper

Six-Cylinder-In-Line Turbo-Charged Diesel Engine Crankshaft Torsional Vibration Characteristics

2001-11-12
2001-01-2719
Engine crankshafts have been designed to avoid low-harmonic-order resonant torsional vibration in a commonly-used engine speed range, but the authors have found that, in some engines, especially turbo-charged engines, a significant degree of a low-harmonic-order exciting torque acts on the crankshaft. In these engines, the amplitude of non-resonant low-harmonic-order torsional vibration is almost as large as that of the resonant one. The authors conclude that the 3rd-order non-resonant torsional amplitude is not only significant but also characteristic of the turbo-charged engine in comparison with the naturally-aspirated engine, and recommend that crankshafts on turbo-charged diesel engines should be made stiffer than those on naturally-aspirated engines.
Technical Paper

An Experimental Study on Phenomena of Piston Ring Collapse

2002-03-04
2002-01-0483
This study has been conducted aiming at an experimental verification of the ring collapse phenomena that occurs in a taper faced second ring of a direct fuel injection type truck diesel engine. The oil film thickness of the second ring, the ring axial motion and the inter-ring pressure have been measured under various operating conditions of engine. As a result, it is verified that the back pressure of the second ring becomes lower than the second land pressure, and that the second ring oil film becomes extremely thick temporarily where the second ring contacts with the ring groove upper surface. It is also verified that blow-by passes through the second ring where the oil film of the second ring becomes thick. Hence it is highly probable that the collapse of the second ring has occurred at that time.
Technical Paper

Development of a Technique to Predict Oil Consumption with Consideration for Cylinder Deformation - Prediction of Ring Oil Film Thickness and Amount of Oil Passing Across Running Surface under Cylinder Deformation -

2003-03-03
2003-01-0982
Although various factors affecting oil consumption of an internal combustion engine can be considered, a technique to predict the amount of oil consumed within a cylinder that passes across a running surface of a ring was developed in this study. In order to predict the effect of cylinder deformation on oil consumption, a simple and easy technique to calculate the oil film thickness in deformed cylinder was proposed. For this technique, the piston ring was assumed to be a straight beam, and the beam bends with ring tension, gas pressure, and oil film pressure. From the calculated oil film thickness, amount of oil passing across the running surface of the TOP ring and into the combustion chamber was calculated. The calculated results were then compared to the oil film thickness of the ring and oil consumption measured during engine operation, and their validity was confirmed.
Technical Paper

The Effects of Crank Ratio and Crankshaft Offset on Piston Friction Losses

2003-03-03
2003-01-0983
A study was conducted to understand the effects the specifications of the crank-slider mechanism have on piston friction losses. The information obtained through the study is believed to be useful information for reducing the piston friction. A single-cylinder spark-ignited gasoline engine was designed and constructed to have not only a real-time piston friction measurement system using the floating liner method, but also provisions to facilitate changing the specifications of the crank-slider mechanism. This paper describes the study results obtained under various engine-operating conditions and reports the parametric test results of three crank ratios and five crankshaft-offset amounts tested.
Technical Paper

Measurement of Cylinder Bore Deformation During Actual Operating Engines

1991-02-01
910042
One of the phenomena accompanying the lightweight/compact/high power output feature of engines is the cylinder bore deformation, which may readily cause increased oil consumption, gas leakage, unusual wear, scuffing, etc.. The authors have had experiences that piston rings had generated contact failure during engine operation (1)*. Such deformation is generated as a combination of the static deformation due to head bolt tightening, crankshaft installation, etc., and the deformation by the operating factors; thermal load and combustion pressure. Countermeasure of design have been made for the former (2)*, and prediction of the deformation during actual operating have been tried using FEM analysis, etc. for the latter (3)*. Therefore, the accurate measurement result have been required strongly, for a long time. But it could not be realized in the past.
Technical Paper

“Catalytic Engine” NOx Reduction of Diesel Engines with New Concept Onboard Ammonia Synthesis System

1992-02-01
920469
Ammonia is one of the most useful compounds that react with NOx selectively on a catalyst, such as V2O5-TiO2, under oxygen containing exhaust gas. However ammonia cannot be stored because of its toxicity for the small power generator in populated areas or for the diesel vehicles. A new concept for NOx reduction in diesel engine using ammonia is introduced. This system is constructed from the hydrogen generator by fuel reformer, the ammonia synthesizer, SCR catalyst for NOx reduction and the gas injection system of reformed gas into the cylinder. Experimental results show that, the SCR catalyst provides a very high rate of NOx reduction, reformed gas injection into cylinder is very effective for particulate reduction. WHEN CONSIDERING INTERNAL COMBUSTION ENGINES of the 1990's the question of how to harmonize the engine with the natural environments is one of the greatest problems. The internal combustion engine changes a substance into energy via its explosive combustion.
Technical Paper

Measurement of Piston-Skirt Deformation in Engine Operation by Means of Rotating Cylinder with Gap-Sensors

1993-03-01
930717
An unique measurement method was developed for measurement of the piston outer surface during the engine operation. The method was realized by embedding a gap sensor into a cylinder bore and by rotating the cylinder in the circumferential direction. By means of this method, interesting data of skirt deformation of a gasoline engine caused by temperature, pressure and the slap force were obtained.
Technical Paper

Effect of Hydrogen Jet on Mixture Formation in a High-Pressure Injection Hydrogen Fueled Engine with Spark Ignition

1993-08-01
931811
In order to establish hydrogen engines for practical use, it is important to overcome difficulties caused by unique characteristics of hydrogen fuel. A hydrogen engine with direct injection right before top dead center(TDC) and spark ignition has advantages such as prevention of abnormal combustion and realization of high power output near the stoichiometric air-fuel ratio, in comparison with an engine with external mixture. On the other hand, it has been pointed out that ignition and combustion for this type of hydrogen engines should be improved and that further studies on mixture formation of air and injected hydrogen are necessary for the improvement. For the direct injection hydrogen engine, mixture is formed both by air flow inside the combustion chamber and by injected hydrogen jet.
Technical Paper

Effect of Piston Motion on Piston Skirt Friction of a Gasoline Engine

1997-02-24
970839
This study has been aimed at the reduction of the intense piston skirt friction force that appears in the expansion stroke out of all piston friction forces generated in gasoline engines. The friction characteristics at the piston skirt have been analyzed according to the measured results at piston friction forces and the shapes of wears at the piston skirt in actual engine operations. It is found from the above that the majority of the side force working on each piston is supported by the oil film on the skirt, while only some of the side force is supported by the portion in metallic contact with the cylinder. It is also found through experiments that the metallic contact portion has a great effect on the friction force at the skirt. The effect of piston posture in expansion stroke on the friction force has been also analyzed based on the measured results of piston slap motions.
Technical Paper

Friction and Lubrication Characteristics of Piston Pin Boss Bearings of an Automotive Engine

1997-02-24
970840
The aim of this research was to analyze the lubrication conditions of piston pin boss bearings used in the press-fit piston pins of automobile gasoline engines. An original pin boss friction measuring device was developed and used to successfully obtain measurements. It was revealed that the friction force peaks twice every cycle at high engine loads, and non-fluid lubrication characteristics are displayed. The friction forces for various differing piston pins and pin boss bearings were analyzed, and it was shown that reducing piston pin length or thickness to reduce piston weight, or reducing the pin boss bearing clearance to reduce noise worsen the friction characteristics and increase the possibility of abnormal bearing friction as well as seizure.
Technical Paper

Part 1: Piston Friction and Noise Study of Three Different Piston Architectures for an Automotive Gasoline Engine

2006-04-03
2006-01-0427
The objective was to rank piston friction and noise for three piston architectures at three cold clearance conditions. Piston secondary motion was measured using four gap sensors mounted on each piston skirt to better understand the friction and noise results. One noticeable difference in friction performance from conventional designs was as engine speed increased the friction force during the expansion stroke decreased. This was accompanied by relatively small increases in friction force during the other strokes so Friction Mean Effective Pressure (FMEP) for the whole cycle was reduced. Taguchi's Design of Experiment method was used to analyze the variances in friction and noise.
X