Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

Effect of Fuel Dissolved in Crankcase Oil on Engine-Out Hydrocarbon Emissions from a Spark-Ignited Engine

1997-10-01
972891
A single-cylinder, spark-ignited engine was run on a certification test gasoline to saturate the oil in the sump with fuel through exposure to blow-by gas. The sump volume was large relative to production engines making its absorption-desorption time constant long relative to the experimental time. The engine was motored at 1500 RPM, 90° C coolant and oil temperature, and 0.43 bar MAP without fuel flow. Exhaust HC concentrations were measured by on-line FID and GC analysis. The total motoring HC emissions were 150 ppmC1; the HC species distribution was heavily weighted to the low-volatility components in the gasoline. No high volatility components were visible. The engine was then fired on isooctane fuel at the above conditions, producing a total engine-out HC emission of 2300 ppmC1 for Φ = 1.0 and MBT spark timing.
Technical Paper

A Comprehensive Data Generation Facility for Internal Combustion Engine Evaluation and Development

1990-02-01
900166
A super-microcomputer is utilized in an engine-dynamometer facility to create a comprehensive engine evaluation system. A unique feature of this system is the combination of experimental and modelling activities in evaluating engine designs. The system acquires engine operating conditions, emissions, and dynamic cylinder and manifold pressures via the data acquisition interface. After acquisition, the computer is also capable of providing engine model predictions from either an empirical model or a zero-dimensional thermodynamic model. The data gathering process is speed limited by the settling time of the engine-dynamometer system. The acquisition and modelling procedures are controlled by an internally developed, menu driven, software package. Features of the system include commercial relational database software for rapid storage and retrieval of acquired data and a high resolution graphics monitor for immediate display of analyzed pressure data.
Technical Paper

Effects of Injection Timing on Liquid-Phase Fuel Distributions in a Centrally-Injected Four-Valve Direct-Injection Spark-Ignition Engine

1998-10-19
982699
An experimental study was carried out to investigate the effects of fuel injection timing on the spatial and temporal development of injected fuel sprays within a firing direct-injection spark-ignition (DISI) engine. It was found that the structure of the injected fuel sprays varied significantly with the timing of the injection event. During the induction stroke and the early part of the compression stroke, the development of the injected fuel sprays was shown to be controlled by the state of the intake and intake-generated gas flows at the start of injection (SOI).The relative influence of these two flow regimes on the injected fuel sprays during this period was also observed to change with injection timing, directly affecting tip penetration, spray/wall impingement and air-fuel mixing. Later in the compression stroke, the results show the development of the injected fuel sprays to be dominated by the increased cylinder pressure at SOI.
Technical Paper

Can Fuel Preparation Affect Engine-Out Hydrocarbon Emissions during an FTP (75CVS) Cycle Test?

2001-03-05
2001-01-1312
The effect of fuel preparation on time-resolved, engine-out hydrocarbon (HC) emissions over a Federal Test Procedure cycle [FTP (75CVS)] for a ULEV vehicle equipped with a 6 cylinder engine has been investigated. Using a single-cone injector, the HC mole fraction in Bag 1 increased by a factor of 3-4 during each of the three accelerations in the first 100 sec after start. No such increases were observed in Bag 3 when the engine was fully warm. The increases during accelerations in Bag 1 were reduced by a factor of 3 when using a Dual-cone fuel injector as a drop-in substitute. The total, tailpipe FTP (75CVS) mass emissions were 25% smaller when using the Dual-cone injector. These results demonstrate that fuel preparation can affect HC emissions from a vehicle very significantly during cold start as has been deduced previously during cold-start tests using a dynamometer-controlled engine.
Technical Paper

Fiber Optic Sensor for Crank Angle Resolved Measurements of Burned Gas Residual Fraction in the Cylinder of an SI Engine

2001-05-07
2001-01-1921
A fiber optic infrared spectroscopic sensor was developed to measure the crank angle resolved residual fraction of burned gas retained in the cylinder of a four-stroke SI engine. The sensor detected the attenuation of infrared radiation in the 4.3 μm infrared vibrational-rotational absorption band of CO2. The residual fraction remaining in the cylinder is proportional to the CO2 concentration. The sensor was tested in a single-cylinder CFR spark ignition engine fired on propane at a speed of 700 rpm. The sensor was located in one of two spark plug holes of the CFR engine. A pressure-transducer-type spark plug was used to record the cylinder pressure and initiate the spark. The temporal resolution of the measurements was 540 μs (equivalent to 2.3 crank angle degrees) and the spatial resolution was 6 mm. Measurements were made during the intake and compression stroke for several intake manifold pressures. The compression ratio of the engine was varied from 6.3 to 9.5.
Technical Paper

Effects of Fuel Injection Pressure in an Optically-Accessed DISI Engine with Side-Mounted Fuel Injector

2001-05-07
2001-01-1975
This paper presents the results of an experimental study into the effects of fuel injection pressure on mixture formation within an optically accessed direct-injection spark-ignition (DISI) engine. Comparison is made between the spray characteristics and in-cylinder fuel distributions due to supply rail pressures of 50 bar and 100 bar subject to part-warm, part-load homogeneous charge operating conditions. A constant fuel mass, corresponding to stoichiometric tune, was maintained for both supply pressures. The injected sprays and their subsequent liquid-phase fuel distributions were visualized using the 2-D laser Mie-scattering technique. The experimental injector (nominally a hollow-cone pressure-swirl design) was seen to produce a dense filled spray structure for both injection pressures under investigation. In both cases, the leading edge velocities of the main spray suggest the direct impingement of liquid fuel on the cylinder walls.
Technical Paper

The Effect of Air/Fuel Ratio on Wide Open Throttle HC Emissions from a Spark-Ignition Engine

1994-10-01
941961
Currently most automotive manufacturers calibrate for rich air/fuel ratios at wide open throttle which produces lower exhaust gas temperatures. Future federal emissions regulations may require less enrichment under these conditions. This study was undertaken to address the question of what happens to engine-out hydrocarbon emissions with different air/fuel ratios at wide open throttle. Tests were run on a single cylinder research engine with a two valve combustion chamber at a compression ratio of 9:1. The test matrix included three air/fuel ratios (10.5, 12.5 and 14.5) and two speeds (1500 and 3000 rpm) at wide open throttle as well as three air/fuel ratios (12.5, 14.6 and 16.5) at a part load condition (1500 rpm, 3.8 bar IMEP). The exhaust was sampled and analyzed for both total and speciated hydrocarbons. The speciation analysis provided concentration data for hydrocarbons present in the exhaust containing twelve or fewer carbon atoms.
Technical Paper

Effect of Engine Operating Parameters on Hydrocarbon Oxidation in the Exhaust Port and Runner of a Spark-Ignited Engine

1995-02-01
950159
The effect of engine operating parameters (speed, spark timing, and fuel-air equivalence ratio [Φ]) on hydrocarbon (HC) oxidation within the cylinder and exhaust system is examined using propane or isooctane fuel. Quench gas (CO2) is introduced at two locations in the exhaust system (exhaust valve or port exit) to stop the oxidation process. Increasing the speed from 1500 to 2500 RPM at MBT spark timing decreases the total, cylinder-exit HC emissions by ∼50% while oxidation in the exhaust system remains at 40% for both fuels. For propane fuel at 1500 rpm, increasing Φ from 0.9 (fuel lean) to 1.1 (fuel rich) reduces oxidation in the exhaust system from 42% to 26%; at 2500 RPM, exhaust system oxidation decreases from 40% to approximately 0% for Φ = 0.9 and 1.1, respectively. Retarded spark increases oxidation in the cylinder and exhaust system for both fuels. Decreases in total HC emissions are accompanied by increased olefinic content and atmospheric reactivity.
Technical Paper

Compression Ratio and Coolant Temperature Effects on HC Emissions from a Spark- Ignition Engine

1995-02-01
950163
Modern four-valve engines are running at ever higher compression ratios in order to improve fuel efficiency. Hotter cylinder bores also can produce increased fuel economy by decreasing friction due to less viscous oil layers. In this study changes in compression ratio and coolant temperature were investigated to quantify their effect on exhaust emissions. Tests were run on a single cylinder research engine with a port-deactivated 4-valve combustion chamber. Two compression ratios (9.15:1 and 10.0:1) were studied at three air/fuel ratios (12.5, 14.6 and 16.5) at a part load condition (1500 rpm, 3.8 bar IMEP). The effect of coolant temperature (66 °C and 108°C) was studied at the higher compression ratio. The exhaust was sampled and analyzed for both total and speciated hydrocarbons. The speciation analysis provided concentration data for hydrocarbons present in the exhaust containing twelve or fewer carbon atoms.
Technical Paper

Fuel Composition Effects on Hydrocarbon Emissions from a Spark-Ignited Engine - Is Fuel Absorption in Oil Significant?

1995-10-01
952542
Absorption of fuel in engine oil layers has been shown to be a possible source of hydrocarbon (HC) emissions from spark-ignited engines. However, the magnitude of this source in a normally operating engine has not been determined unambiguously. In these experiments, a series of n-alkanes of widely different solubility (n-hexane through undecane) was added (1.5 wt % each) to a Base gasoline (CA Phase 2). Steady-state experiments were carried out at two coolant temperatures (339 and 380 K) using a single-cylinder engine with the combustion chamber of a production V-8. Both total and speciated engine-out HC emissions were measured. The emissions indices of the heavier dopants did not increase relative to hexane at either coolant temperature.
Technical Paper

Modeling the Effects of Intake Flow Structures on Fuel/Air Mixing in a Direct-injected Spark-Ignition Engine

1996-05-01
961192
Multidimensional computations were carried out to simulate the in-cylinder fuel/air mixing process of a direct-injection spark-ignition engine using a modified version of the KIVA-3 code. A hollow cone spray was modeled using a Lagrangian stochastic approach with an empirical initial atomization treatment which is based on experimental data. Improved Spalding-type evaporation and drag models were used to calculate drop vaporization and drop dynamic drag. Spray/wall impingement hydrodynamics was accounted for by using a phenomenological model. Intake flows were computed using a simple approach in which a prescribed velocity profile is specified at the two intake valve openings. This allowed three intake flow patterns, namely, swirl, tumble and non-tumble, to be considered. It was shown that fuel vaporization was completed at the end of compression stroke with early injection timing under the chosen engine operating conditions.
Technical Paper

Effects of Injection Timing on Air-Fuel Mixing in a Direct-Injection Spark-Ignition Engine

1997-02-24
970625
Multidimensional modeling is used to study air-fuel mixing in a direct-injection spark-ignition engine. Emphasis is placed on the effects of the start of fuel injection on gas/spray interactions, wall wetting, fuel vaporization rate and air-fuel ratio distributions in this paper. It was found that the in-cylinder gas/spray interactions vary with fuel injection timing which directly impacts spray characteristics such as tip penetration and spray/wall impingement and air-fuel mixing. It was also found that, compared with a non-spray case, the mixture temperature at the end of the compression stroke decreases substantially in spray cases due to in-cylinder fuel vaporization. The computed trapped-mass and total heat-gain from the cylinder walls during the induction and compression processes were also shown to be increased in spray cases.
Technical Paper

Detailed Hydrocarbon Species and Particulate Emissions from a HCCI Engine as a Function of Air-Fuel Ratio

2005-10-24
2005-01-3749
Concentrations of individual species in the engine-out exhaust gas from a gasoline-fueled (101.5 or 91.5 RON), direct-injection, compression-ignition (HCCI) engine have been measured by gas chromatography over the A/F range 50 to 230 for both stratified and nearly homogeneous fuel-air mixtures. The species identified include hydrocarbons, oxygenated organic species, CO, and CO2. A single-cylinder HCCI engine (CR = 15.5) with heated intake charge was used. Measurements of the mass and size distribution of particulate emissions were also performed. The 101.5 RON fuel consisted primarily of five species, simplifying interpretation of the exhaust species data: iso-pentane (24%), iso-octane (22%), toluene (17%), xylenes (10%), and trimethylbenzenes (9%).
Technical Paper

Effects of Port-Injection Timing and Fuel Droplet Size on Total and Speciated Exhaust Hydrocarbon Emissions

1993-03-01
930711
The requirement of reducing HC emissions during cold start and improving transient performance has prompted a study of the fuel injection process. Port-fuel-injection with the Intake-valve open using small droplets is a potentially feasible option to achieve the goals. To gain a better understanding of the injection process, the effects of droplet size, injection timing, and coolant temperature on the total and speciated HC emissions were tested In a Single-cylinder engine. It was found that droplet size plays an important role in the total HC emission increase during open-valve injection, especially with cold operation. Large droplets (300 μm SMD) produced a substantial HC increase while small droplets (14 μm SMD) produced no observable increase. Increase In the total HC emissions was always accompanied by an increase in the heavy fuel components in the exhaust gases.
Technical Paper

Further Experiments on the Effects of In-Cylinder Wall Wetting on HC Emissions from Direct Injection Gasoline Engines

1999-10-25
1999-01-3661
A recently developed in-cylinder fuel injection probe was used to deposit a small amount of liquid fuel on various surfaces within the combustion chamber of a 4-valve engine that was operating predominately on liquefied petroleum gas (LPG). A fast flame ionization detector (FFID) was used to examine the engine-out emissions of unburned and partially-burned hydrocarbons (HCs). Injector shut-off was used to examine the rate of liquid fuel evaporation. The purpose of these experiments was to provide insights into the HC formation mechanism due to in-cylinder wall wetting. The variables investigated were the effects of engine operating conditions, coolant temperature, in-cylinder wetting location, and the amount of liquid wall wetting. The results of the steady state tests show that in-cylinder wall wetting is an important source of HC emissions both at idle and at a part load, cruise-type condition. The effects of wetting location present the same trend for idle and part load conditions.
X