Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Standard

Recommended Wheel Tie Bolt Preload Procedure

2007-08-09
HISTORICAL
ARP5481
This SAE Aerospace Recommended Practice (ARP) provides the recommended procedure for obtaining desired preloads in aircraft wheel tie bolts when mounting tires and assembling the wheel. It is generally referred to as the snug-angle bolted joint assembly procedure. It is also known as the “torque-turn” procedure in the heavy equipment ground vehicle industry.
Standard

Recommended Wheel Tie Bolt Preload Procedure

2020-09-17
CURRENT
ARP5481A
This SAE Aerospace Recommended Practice (ARP) provides the recommended procedure for obtaining desired preloads in aircraft wheel tie bolts when mounting tires and assembling the wheel. It is generally referred to as the snug-angle bolted joint assembly procedure. It is also known as the “torque-turn” procedure in the heavy equipment ground vehicle industry.
Standard

Valve, Inflation, Aircraft Wheel

2019-11-14
CURRENT
AS6817
This SAE Aerospace Standard (AS) defines the configuration of aircraft wheel inflation valve assemblies, including required tolerances, materials, and appropriate finishes.
Standard

MAINTAINABILITY RECOMMENDATIONS FOR AIRCRAFT WHEELS AND BRAKES

1993-04-01
HISTORICAL
ARP813A
This ARP suggests the maintainability features which should be considered in the design of aircraft wheels and brakes. The effect on such factors as cost, weight, reliability, and compatibility with other systems should be considered before incorporation of any of these features in the design.
Standard

Wheel and Brake (Sand and Permanent Mold) Castings - Minimum Requirements for Aircraft Applications

2005-01-05
HISTORICAL
AS586B
This SAE Aerospace Standard (AS) sets forth the minimum quality required for aircraft wheel and brake castings. Its use will establish minimum acceptable requirements for internal structure and surface conditions and is predicated on the use of a casting factor for the ultimate load of more than 1.51 through 2.00. When casting factors of 1.25 through 1.50 are used, visual, penetrant, and radiographic or other approved equivalent nondestructive inspection methods shall all be required on each production casting. Where specific parts, or areas of parts, require a quality level exceeding that described by this document, the requirements shall be established by negotiation between the purchaser and vendor.
Standard

Wheel and Brake (Sand and Permanent Mold) Castings - Minimum Requirements for Aircraft Applications

2002-07-30
HISTORICAL
AS586A
This SAE Aerospace Standard (AS) sets forth the minimum quality required for aircraft wheel and brake castings. Its use will establish minimum acceptable requirements for internal structure and surface conditions and is predicated on the use of a casting factor for the ultimate load of more than 1.51 through 2.00. When casting factors of 1.25 through 1.50 are used, visual, penetrant, and radiographic or other approved equivalent nondestructive inspection methods shall all be required on each production casting. Where specific parts, or areas of parts, require a quality level exceeding that described by this document, the requirements shall be established by negotiation between the purchaser and vendor.
Standard

Wheel and Brake (Sand and Permanent Mold) Castings - Minimum Requirements for Aircraft Applications

2011-01-06
CURRENT
AS586C
This SAE Aerospace Standard (AS) sets forth the minimum quality required for aircraft wheel and brake castings. Its use will establish minimum acceptable requirements for internal structure and surface conditions and is predicated on the use of a casting factor for the ultimate load of more than 1.51 through 2.00. When casting factors of 1.25 through 1.50 are used, visual, penetrant, and radiographic or other approved equivalent nondestructive inspection methods shall all be required on each production casting. Where specific parts, or areas of parts, require a quality level exceeding that described by this document, the requirements shall be established by negotiation between the purchaser and vendor.
Standard

Test Method for Catalytic Carbon Brake Disk Oxidation

2020-09-16
CURRENT
AIR5567A
The scope of the test method is to provide stakeholders including fluid manufacturers, airport operators, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This simple test is only designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake stack oxidation is a function of heat sink design and the operating environment.
Standard

Overpressurization Release Devices

2018-06-21
CURRENT
ARP1322C
This SAE Aerospace Recommended Practice (ARP) specifies the minimum design and qualification test recommendations for aircraft wheel overpressurization release devices used with tubeless aircraft tires to protect from possible explosive failure of the contained inflation chamber due to overinflation. Devices of this type provide a means, but not the only means, for showing compliance to Subsection 25.731(d) of Part 25 of Title 14 of the Code of Federal Regulations. Devices of this type will not protect against flash fire explosive conditions within the inflation chamber which may occur due to extremely overheated brakes or spontaneous combustion caused by a foreign substance within the inflation chamber. To help protect against this condition, nitrogen (N2) or other inert gas should be used for inflation.
Standard

Minimum Performance Requirements for Transport Airplane Wheel and Brake Assemblies Using Electric Power Actuation

2012-07-11
CURRENT
AS5663A
In lieu of TSO-C135, this SAE Aerospace Standard (AS) prescribes the minimum performance standards for wheels, brakes, and wheel and brake assemblies using electric power actuation for transport category (14 CFR Part 25) airplanes. Testing is limited to that necessary to establish minimum performance related to strength, robustness, stopping capability, and energy absorption to ensure measurable, repeatable industry accepted standards for these aspects of wheel and brake performance. The test parameters associated with electric braking actuation are defined around the state of the technology at this time, typically comprised of an Electro-Mechanical Actuator (EMA) controlled by a control system delivering electric power and effecting motor control.
Standard

Minimum Performance Requirements for Transport Airplane Wheel and Brake Assemblies Using Electric Power Actuation

2012-05-09
HISTORICAL
AS5663
In lieu of TSO-C135, this SAE Aerospace Standard (AS) prescribes the minimum performance standards for wheels, brakes, and wheel and brake assemblies using electric power actuation for transport category (14 CFR Part 25) airplanes. Testing is limited to that necessary to establish minimum performance related to strength, robustness, stopping capability, and energy absorption to ensure measurable, repeatable industry accepted standards for these aspects of wheel and brake performance. The test parameters associated with electric braking actuation are defined around the state of the technology at this time, typically comprised of an Electro-Mechanical Actuator (EMA) controlled by a control system delivering electric power and effecting motor control.
Standard

REPLACEMENT AND MODIFIED BRAKES AND WHEELS

1993-04-01
HISTORICAL
ARP1619
This Aerospace Recommended Practice (ARP) identifies "type" and "degree" of change to brake, wheel, or component thereof, and recommends substantiation procedures to confirm that performance capability of an existing aircraft using the replacement or modified brake and wheel equipment is not less than that when originally certified for commercial or military aircraft applications.
Standard

Replacement and Modified Brakes and Wheels

2012-05-16
HISTORICAL
ARP1619A
This SAE Aerospace Recommended Practice (ARP) defines recommended substantiation procedures and associated reviewing and approval processes to confirm that proposed changes do not compromise the demonstrated safety, performance, and airplane compatibility of the originally certified commercial and military aircraft. Successful demonstration also includes confirmation that no adverse failure modes are introduced. These procedures apply to modifications made by the original component or assembly supplier as well as certification of an alternate supplier.
Standard

Minimum Performance Recommendations for Part 23, 27, and 29 Aircraft Wheels, Brakes, and Wheel and Brake Assemblies

2012-07-19
CURRENT
ARP5381A
This Minimum Performance Document defines the testing required for wheels, brakes, and wheel and brake assemblies to be used on civil aircraft certified under 14 Code of Federal Regulations (CFR) Part 23, 27, and 29. Compliance with this document is recommended to assure that the equipment supplied will meet the intended design function when installed on aircraft. Compliance with this document does not constitute authorization for installation on an aircraft. The combined recommendations of this document provide an acceptable practice, but not the only practice, for obtaining authorization to apply TSO markings on the equipment.
Standard

Minimum Performance Recommendations for Part 23, 27, and 29 Aircraft Wheels, Brakes, and Wheel and Brake Assemblies

2006-03-17
HISTORICAL
ARP5381
This Minimum Performance Document defines the testing required for wheels, brakes, and wheel and brake assemblies to be used on civil aircraft certified under 14 Code of Federal Regulations (CFR) Part 23, 27, and 29. Compliance with this document is recommended to assure that the equipment supplied will meet the intended design function when installed on aircraft. Compliance with this document does not constitute authorization for installation on an aircraft. The combined recommendations of this document provide an acceptable practice, but not the only practice, for obtaining authorization to apply TSO markings on the equipment.
X