Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Experimental and Analytical Evaluations of a Torsio-Elastic Suspension for Off-Road Vehicles

2010-04-12
2010-01-0643
The ride performance potentials of a prototype torsio-elastic axle suspension for an off-road vehicle were investigated analytically and experimentally. A forestry vehicle was fitted with the prototype suspension at its rear axle to assess its ride performance benefits. Field measurements of ride vibration along the vertical, lateral, fore-aft, roll and pitch axes were performed for the suspended and an unsuspended vehicle, while traversing a forestry terrain. The measured vibration responses of both vehicles were evaluated in terms of unweighted and frequency-weighted rms accelerations and the acceleration spectra, and compared to assess the potential performance benefits of the proposed suspension. The results revealed that the proposed suspension could yield significant reductions in the vibration magnitudes transmitted to the operator's station.
Journal Article

Effect of Terrain Roughness on the Roll and Yaw Directional Stability of an Articulated Frame Steer Vehicle

2013-09-24
2013-01-2366
Compared to the vehicles with conventional steering, the articulated frame steer vehicles (ASV) are known to exhibit lower directional and roll stability limits. Furthermore, the tire interactions with relatively rough terrains could adversely affect the directional and roll stability limits of an ASV due to terrain-induced variations in the vertical and lateral tire forces. It may thus be desirable to assess the dynamic safety of ASVs in terms of their directional control and stability limits while operating on different terrains. The effects of terrain roughness on the directional stability limits of an ASV are investigated through simulations of a comprehensive three-dimensional model of the vehicle with and without a rear axle suspension. The model incorporates a torsio-elastic rear axle suspension, a kineto-dynamic model of the frame steering struts and equivalent random profiles of different undeformable terrains together with coherence between the two tracks profiles.
Journal Article

Property Analysis of an X-Coupled Suspension for Sport Utility Vehicles

2008-04-14
2008-01-1149
The influences of fluidic X-coupling of hydro-pneumatic suspension struts on the various suspension properties are investigated for a sport utility vehicle (SUV). The stiffness and damping properties in the bounce, pitch, roll and warp modes are particularly addressed together with the couplings between the roll, pitch, bounce and warp modes of the vehicle. The proposed X-coupled suspension configuration involves diagonal hydraulic couplings among the different chambers of the four hydro-pneumatic struts. The static and dynamic forces developed by the struts of the unconnected and X-coupled suspensions are formulated using a simple generalized model, which are subsequently used to derive the stiffness and damping properties. The properties of the X-coupled suspension are compared with those of the unconnected suspension configuration, in terms of four fundamental vibration modes, namely bounce, roll, pitch and warp, to illustrate the significant effects of fluidic couplings.
Technical Paper

Optimal Damping Design of Heavy Vehicle with Interconnected Hydro-Pneumatic Suspension

2007-04-16
2007-01-0584
The optimal damping design of roll plane interconnected hydro-pneumatic suspension is investigated, in order to improve vertical ride and road-friendliness of heavy vehicles, while maintaining enhanced roll stability. A nonlinear roll plane vehicle model is developed to study vertical as well as roll dynamics of heavy vehicles. The damping valves and gas chamber are integrated within the same suspension strut unit to realize compact design. The influence of variations in damping valve threshold velocity on relative roll stability is explored, under centrifugal acceleration excitations arising from steady turning and lane change maneuvers, as well as crosswind. The effects of damping valve design parameters on the vertical ride vibration and vehicle-road interaction characteristics are also investigated under a medium rough road input and two different vehicle speeds.
Technical Paper

Dynamic Analyses of Different Concept Car Suspension System Layouts

2009-04-20
2009-01-0360
Ride performance characteristics of a road vehicle involving different suspension system layouts are investigated. The suspension layouts consist of conventional rectangular 4-wheel, novel diamond-shaped 4-wheel, triangular 3-wheel and inverse-triangular 3-wheel. A generalized full-vehicle model integrating different suspension system layouts is formulated. The fundamental suspension properties are compared in terms of bounce-, roll- and pitch-mode. The ride dynamic responses and power consumption characteristics are explored under two measured road roughness excitations and a range of vehicle speeds. The results demonstrate that the novel diamond-shaped suspension system layout could yield significantly enhanced vehicle ride performance in an energy-saving manner.
Technical Paper

Influence of Oil Compressibility of Fluidic Suspensions on Vehicle Roll Stability and Ride Dynamics

2010-10-05
2010-01-1893
This study investigates influence of compressible hydraulic fluid and suspension floating piston dynamics of fluidic suspensions on heavy vehicle roll stability and ride dynamics. Two fluidic suspension designs, including a single-gas-chamber strut and a novel twin-gas-chamber strut, are analyzed to develop the mathematical formulations of dynamic forces, upon considerations of hydraulic fluid compressibility and floating piston dynamics. Dynamic responses of the heavy vehicle with the different suspension configurations are then performed using a nonlinear roll plane vehicle model. The excitations arise from vehicle-road interactions as well as a steady steering maneuver. The results demonstrate that the compressibility characteristic of hydraulic fluid within a hydro-pneumatic suspension could affect the vehicle roll stability and ride dynamics, while the influence of suspension floating piston dynamics on vehicle dynamic responses is negligible.
Technical Paper

Experimental and Analytical Property Characterization of a Self-Damped Pneumatic Suspension System

2010-10-05
2010-01-1894
This study investigates the fundamental stiffness and damping properties of a self-damped pneumatic suspension system, based on both the experimental and analytical analyses. The pneumatic suspension system consists of a pneumatic cylinder and an accumulator that are connected by an orifice, where damping is realized by the gas flow resistance through the orifice. The nonlinear suspension system model is derived and also linearized for facilitating the properties characterization. An experimental setup is also developed for validating both the formulated nonlinear and linearized models. The comparisons between the measured data and simulation results demonstrate the validity of the models under the operating conditions considered. Two suspension property measures, namely equivalent stiffness coefficient and loss factor, are further formulated.
Technical Paper

Comparison of Roll Properties of Hydraulically and Pneumatically Interconnected Suspensions for Heavy Vehicles

2005-11-01
2005-01-3593
Two different concepts in hydro-pneumatic suspension struts are formulated to conveniently realize either hydraulic or pneumatic interconnections between the struts within different wheel suspensions. The formulation employs a compact strut design that integrates a gas chamber and damping valves within the same unit, and provides considerably enhanced working area to appreciably reduce the operating pressure. A transverse interconnection between the hydro-pneumatic struts in the roll plane is analyzed to investigate its static and dynamic heave and roll properties, and relative potential benefits in enhancing the roll properties, while retaining the soft heave ride. Different hydraulically and pneumatically interconnected strut configurations are analyzed for a heavy vehicle, with appropriate considerations of the fluid compressibility, while the feedback effects associated with the interconnections are emphasized.
X