Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Comparison of PMHS, WorldSID, and THOR-NT Responses in Simulated Far Side Impact

2007-10-29
2012-01-1537
Injury to the far side occupant has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to determine the response of PMHS in far side impact configurations, with and without generic countermeasures, and compare responses to the WorldSID and THOR dummies. A far side impact buck was designed for a sled test system that included a center console and three-point belt system. The buck allowed for additional options of generic countermeasures including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o'clock PDOF) or a 60-degree (2-o'clock PDOF) orientation. A total of 18 tests on six PMHS were done to characterize the far side impact environment at both low (11 km/h) and high (30 km/h) velocities. WorldSID and THOR-NT tests were completed in the same configurations to conduct matched-pair comparisons.
Technical Paper

Thoracic Deformation Contours in a Frontal Impact

1991-10-01
912891
The objective of the study was to document the thoracic deformation contours in a simulated frontal impact. Unembalmed human cadavers and the Hybrid III anthropomorphic manikins were tested. Data from the newly developed External Peripheral Instrument for Deformation Measurement (EPIDM) was used to derive deformation patterns at upper and lower thoracic levels. Deceleration sled tests were conducted on three-point belt restrained surrogates positioned in the driver's seat (no steering assembly) using a horizontal impact test sled at velocities of approximately 14.0 m/s. Lap and shoulder belt forces were recorded with seat belt transducers. The experimental protocol included a Hybrid III manikin experiment followed by the human cadaver test. Both surrogates were studied under similar input and instrumentation conditions, and identical data acquisition and analysis procedures were used. All six testedcadavers demonstrated multiple bilateral rib fractures.
Technical Paper

Ankle Joint Injury Mechanism for Adults in Frontal Automotive Impact

1991-10-01
912902
Accident cases are examined to determine the injury mechanism for foot/ankle moderate and greater injuries in vehicle crashes. The authors examine 480 in-depth cases from the National Accident Sampling System for the years 1979 through 1987. An injury mechanism - a description of how the foot/ankle physically interacted with the interior of the vehicle - is assigned to each of the injured occupants. For the accidents in which the 480 occupants were injured, the more prominent types of vehicle collisions are characterized.
Technical Paper

Development of an Improved Thoracic Injury Criterion

1998-11-02
983153
In an effort to better understand thoracic trauma in frontal impacts, seventy-one frontal impact sled tests were conducted using post-mortem human subjects in the driver's position. Various contemporary automotive restraint systems were used in these tests. The post-mortem subjects were instrumented with accelerometers and chest bands to characterize their mechanical response during the impact. The resulting injury from the impact was determined through radiography and detailed autopsy and its severity was coded according to the Abbreviated Injury Scale. The measured mechanical responses were analyzed using statistical procedures. In particular, linear logistic regression was used to develop models which associate the measured mechanical parameters to the observed thoracic injury response. Univariate and multivariate models were developed taking into consideration potential confounders and effect modifiers.
Technical Paper

Analytical Investigation of Driver Thoracic Response to Out of Position Airbag Deployment

1998-11-02
983165
A finite element model of the human thorax was merged with a rigid body finite element implementation of the Hybrid III dummy (after removal of the Hybrid III thorax) and the combined model is used in simulations of an out of position driver during airbag deployment. Parameters related to injury, such as A-P thorax deformation, Viscous Criterion, rib stress distribution and strain in the thoracic contents are used to quantify the thoracic injury response. Initial driver position is varied to examine the relationship between distance from the airbag module and thoracic injury risk. The potential for injury mitigation through modulation of airbag inflation after initiation is also investigated. The utility of the combined model as an effective tool for the analysis of occupant kinematics and dynamics, examination of injury mechanisms, and optimization of restraint system design parameters is demonstrated.
Technical Paper

Response and Tolerance of the Human Forearm to Impact Loading

1998-11-02
983149
With the widespread use of supplemental restraint systems (airbags), occasional rare injuries have occurred because of the force associated with these systems upon deployment. Recent case studies have demonstrated forearm fractures associated with airbag deployment. The present study was conducted to determine the tolerance of the human forearm under a dynamic bending mode. A total of 30 human cadaver forearm specimens were tested using three-point bending protocol to failure at 3.3 m/s and 7.6 m/s velocities. Results indicated significantly (p < 0.01) greater biomechanical parameters associated with males compared to females. The bending tolerance of the human forearm, however, was found to be most highly correlated to bone mineral density, bone area, and forearm mass. Thus, any occupant with lower bone mineral density and lower forearm geometry/mass is at higher risk. The mean failure bending moment for all specimens was 94 Nm.
Technical Paper

Responses of Human Surrogates to Simulated Rear Impact: Velocity and Level Dependent Facet Joint Kinematics

2001-03-05
2001-01-0175
The objective of the present study was to determine the kinematics of the human head-neck complex with specific reference to posterior facet joints as a function of rear impact acceleration. Six intact human head-neck complexes were prepared by fixing the first thoracic vertebra in polymethylmethacrylate. The specimens were oriented such that the Frankfurt plane was horizontal and the cervico-thoracic disc was at an angle of 25 degrees to simulate the normal driving position. Retroreflective targets were inserted to the cervical vertebrae. The specimens were subjected to simulated rear impact accelerations using a minisled apparatus. A series of tests were conducted with velocities of 2.1, 4.6, 6.6, 9.3, and 12.4 km/h. In this study, to achieve the objective, results are presented on the facet joint motions at the C4–5, C5–6, and C6–7 levels as a function of change in velocity.
Technical Paper

THE EFFECT OF ACTIVE MUSCLE TENSION ON THE AXIAL INJURY TOLERANCE OF THE HUMAN FOOT/ANKLE COMPLEX

2001-06-04
2001-06-0074
Axial loading of the foot/ankle complex is an important injury mechanism in vehicular trauma that is responsible for severe injuries such as calcaneal and tibia pilon fractures. Axial loading may be applied to the leg externally, by the toepan and/or pedals, as well as internally, by active muscle tension applied through the Achilles tendon during pre-impact bracing. In order to evaluate the effect of active muscle tension on the injury tolerance of the foot/ankle complex, blunt axial impact tests were performed on 44 isolated lower legs with and without experimentally simulated Achilles tension. The primary fracture mode was calcaneal fracture in both groups, but tibia pilon fractures occurred more frequently with the addition of Achilles tension. Acoustic emission demonstrated that fracture initiated at the time of peak local axial force.
Technical Paper

Biomechanics of Inertial Head-Neck Trauma: Role of Cervical Components

2002-03-19
2002-01-1445
Inertial loading of the head-neck complex occurs in rear impacts wherein the head and neck of the occupant are initially subjected to rearward forces. Epidemiological evidence exists to demonstrate the significance and societal impact of these injuries [4]. From a clinical perspective, trauma secondary to inertial loads belongs to the lower end of the Abbreviated Injury Scale, and no specific diagnostic techniques are available to quantitatively document the injury. Furthermore, identification of the mechanisms of injury and derivation of injury thresholds are limited. In fact, there is a paucity of literature focusing on the reproduction of rear impact-induced neck injuries due to a single-event rear impact. Because the impact acceleration is transmitted to the head from the torso via the cervical column, the components of the human neck play a role in the mechanics of trauma.
Technical Paper

Biodynamics of the Total Human Cadaveric Cervical Spine

1990-10-01
902309
Spinal trauma produced from motor vehicle accidents, diving accidents, or falls occur at high rates of loading. This study was undertaken to reproduce clinically relevant cervical spine injuries under controlled conditions. Six isolated head - T2 human cadaveric preparations were tested using an electrohydraulic piston actuator at loading rates from 295 to 813 cm/sec. The Hybrid III head-neck was tested similarly at rates from 401 to 683 cm/sec. The input forces for specimen tests were of higher magnitude and shorter duration than the distally measured forces. In contrast, the Hybrid III head-neck revealed similar magnitude and duration force traces from input to output. The specimen preparations were analyzed kinematically at 1200 frames/sec with 20 to 30 retroreflective targets fixed to each level of the cervical spine. With this technique it is possible to temporally follow cervical damage as a function of applied force.
Technical Paper

Development of an Advanced ATD Thorax System for Improved Injury Assessment in Frontal Crash Environments

1992-11-01
922520
Injuries to the thorax and abdomen comprise a significant percentage of all occupant injuries in motor vehicle accidents. While the percentage of internal chest injuries is reduced for restrained front-seat occupants in frontal crashes, serious skeletal chest injuries and abdominal injuries can still result from interaction with steering wheels and restraint systems. This paper describes the design and performance of prototype components for the chest, abdomen, spine, and shoulders of the Hybrid III dummy that are under development to improve the capability of the Hybrid III frontal crash dummy with regard to restraint-system interaction and injury-sensing capability.
Technical Paper

Thoracic Biomechanics with Air Bag Restraint

1993-11-01
933121
The objective of the present study was to determine the biomechanics of the human thorax in a simulated frontal impact. Fourteen unembalmed human cadavers were subjected to deceleration sled tests at velocities of nine or 13 m/s. Air bag - knee bolster, air bag - lap belt, and air bag - three-point belt restraint systems were used with the specimen positioned in the driver's seat. Two chest bands were used to derive the deformation patterns at the upper and lower thoracic levels. Lap and shoulder belt forces were recorded with seatbelt transducers. After the test, specimens were evaluated using palpation, radiography, and a detailed autopsy. Thoracic trauma was graded according to the Abbreviated Injury Scale based on autopsy findings. Peak thoracic deformations were normalized with respect to the initial chest depth to facilitate comparison between the specimens.
Technical Paper

Biomechanical Analysis of Tractor Induced Head Injury

1994-09-01
941726
Head injury is a serious threat to lives of people working around farm machinery. The consequence of head injuries are costly, paralytic, and often fatal. Clinical and biomechanical data on head injuries are reviewed and their application in the analysis of head injury risk associated with farm tractor discussed. A significant proportion of tractor-related injuries and deaths to adults, as well as children, is due directly or indirectly to head injury. An improved injury reporting program and biomechanical studies of human response to tractor rollover, runover, and falls, are needed to understand mechanisms of the associated head injury.
Technical Paper

A Three-Dimensional Finite Element Analysis of the Human Brain Under Combined Rotational and Translational Accelerations

1994-11-01
942215
Finite element modelling has been used to study the evolution of strain in a model of the human brain under impulsive acceleration loadings. A cumulative damage measure, based on the calculation of the volume fraction of the brain that has experienced a specific level of stretch, is used as a possible predictor for deformation-related brain injury. The measure is based on the maximum principal strain calculated from an objective strain tensor that is obtained by integration of the rate of deformation gradient with appropriate accounting for large rotations. This measure is used here to evaluate the relative effects of rotational and translational accelerations, in both the sagittal and coronal planes, on the development of strain damage in the brain. A new technique for the computational treatment of the brain-dura interface is suggested and used to alleviate the difficulties in the explicit representation of the cerebrospinal fluid layer existing between the two solid materials.
Technical Paper

Computational Analysis of Head Impact Response Under Car Crash Loadings

1995-11-01
952718
Computational simulations are conducted for several head impact scenarios using a three dimensional finite element model of the human brain in conjunction with accelerometer data taken from crash test data. Accelerometer data from a 3-2-2-2 nine accelerometer array, located in the test dummy headpart, is processed to extract both rotational and translational velocity components at the headpart center of gravity with respect to inertial coordinates. The resulting generalized six degree-of-freedom description of headpart kinematics includes effects of all head impacts with the interior structure, and is used to characterize the momentum field and inertial loads which would be experienced by soft brain tissue under impact conditions. These kinematic descriptions are then applied to a finite element model of the brain to replicate dynamic loading for actual crash test conditions, and responses pertinent to brain injury are analyzed.
Technical Paper

RAID - An Investigative Tool to Study Air Bag/Upper Extremity Interactions

1997-02-24
970399
A study of frontal collisions using the NASS data base showed that there were four times as many arm injuries to belt restrained drivers who had an air bag deploy than for the drivers who were simply belted. By far, the distal forearm/hand was the most commonly injured region. Hard copy review identified two modes of arm injury related to the deploying air bag: 1) The arm is directly contacted by the air bag module and/or flap cover, and 2) The arm is flung away and contacts an interior car surface. Based on the field studies, a mechanical device called the Research Arm Injury Device (RAID) was fabricated to assess the aggressivity of air bags from different manufacturers. Results from static air bag deployment tests with the RAID suggested that the RAID was able to clearly distinguish between the aggressive and non-aggressive air bags. Maximum moments ranging between 100 Nm and 650 Nm, and hand fling velocity ranging between 30 and 120 km/h were measured on the RAID in these tests.
Technical Paper

Dynamic Axial Tolerance of the Human Foot-Ankle Complex

1996-11-01
962426
Axial loading of the calcaneus-talus-tibia complex is an important injury mechanism for moderate and severe vehicular foot-ankle trauma. To develop a more definitive and quantitative relationship between biomechanical parameters such as specimen age, axial force, and injury, dynamic axial impact tests to isolated lower legs were conducted at the Medical College of Wisconsin (MCW). Twenty-six intact adult lower legs excised from unembalmed human cadavers were tested under dynamic loading using a mini-sled pendulum device. The specimens were prepared, pretest radiographs were taken, and input impact and output forces together with the pathology were obtained using load cell data. Input impact forces always exceeded the forces recorded at the distal end of the preparation. The fracture forces ranged from 4.3 to 11.4 kN.
Technical Paper

A Three-Dimensional Finite Element Model of the Human Ankle: Development and Preliminary Application to Axial Impulsive Loading

1996-11-01
962427
This work describes the development of a three-dimensional finite element model of the human ankle/foot complex. This model depicts the primary elements of a 50th percentile human ankle. It includes all the bones of the foot up to the distal tibia/fibula. It also contains the soft tissues of the plantar surface of the foot along with most of the ankle joint ligaments and retinacula. To calibrate the model, a plate with various initial velocities of 5, 7.5 and 10 mph is impacted at the plantar surface of the foot. The model is strictly stabilized by the intrinsic anatomical geometry and the ligamentous structure. It demonstrates to a great extent its capacity to replicate the dynamic response. Global responses of output acceleration and force time histories are obtained and compared reasonably well with experimental data.
Technical Paper

Thoracic Injury Prediction via Digital Convolution Theory

1981-10-01
811010
A dynamic characterization of the human thorax, in the form of a digital impulsive response signature, has been obtained which links the acceleration response of the struck side with the far side of the thorax under side impact conditions. This dynamic characterization was obtained by a unique combination of digital convolution theory, least squares approximation techniques, and a digital set of cadaver impact data. It has proven itself accurate in predicting the maximum relative acceleration, velocity and displacement between the left and the right lateral aspects of the thorax for a variety of impact conditions including lateral pendulum impacts, lateral rigid walls impacts at 15 and 20 mph and lateral impacts into padded walls at 20 mph.
Technical Paper

Experimental Study of a Compliant Bumper System

1983-10-17
831623
An ordinary rigid bumper system and a compliant bumper system for pedestrian protection developed by the NHTSA, US Department of Transportation, were compared in an experimental study of leg injuries in car-pedestrian accidents. Human leg specimens were struck in 20 experiments with a production car front using the two bumper types. Impacts were made with an ordinary front configuration with the bumpers at the 45 cm level and a 12.5 cm lower front configuration with the bumpers at the 32.5 cm level. The impact velocity was 30-32 km/h. Serious leg injuries were noted with both front configurations and bumper types. The compliant bumper seemed to cause less serious injuries than the rigid one, and the lower front configuration seemed to cause less serious injuries than the ordinary one. A lower bumper level than today's standard and a compliant bumper type is recommended in combination to reduce the risk of serious leg injuries in car-pedestrian accidents.
X