Refine Your Search

Search Results

Journal Article

Elastic-Plastic Indentation and Flat Plate Rolling under Plane Strain Conditions

2011-04-12
2011-01-0035
In this paper, residual stresses due to single indentation and rolling on a finite plate at very high rolling loads are investigated by two-dimensional plane strain finite element analyses using ABAQUS. In the finite element analyses, the roller is modeled as rigid and has frictionless contact with the finite plate. The plate material is modeled as an elastic-plastic power-law strain hardening material with a non-linear kinematic hardening rule for loading and unloading. For indentation and rolling at high rolling loads with extensive plastic deformation, the computational results show that the contact pressure distributions are quite different and they are also significantly different from the elastic Hertzian pressure distribution. The computational results for the rolling case show a significantly higher longitudinal compressive residual stress and a lower out-of-plane compressive residual stress along the contact surface when compared to those for the single indentation case.
Journal Article

Analytical Stress Intensity Factor Solutions for Spot Welds Joining Sheets of Different Materials and Thicknesses

2010-04-12
2010-01-0962
In this paper, analytical stress intensity factor solutions for spot welds with ideal geometry in lap-shear specimens of different materials and thicknesses are presented as functions of the applied load, the elastic material property parameters, and the geometric parameters of the weld and specimen. The analytical stress intensity factor solutions are selectively validated by the results of a three-dimensional finite element analysis for a dissimilar spot weld with ideal geometry in a lap-shear specimen. Finally, selected stress intensity factor solutions at the critical locations of spot welds in lap-shear specimens of dissimilar magnesium, aluminum and steel sheets with equal and different thicknesses are presented in the normalized forms as functions of the ratio of the specimen width to weld diameter.
Journal Article

Modeling of Failure Modes of Gas Metal Arc Welds in Notched Lap-Shear Specimens of HSLA Steel

2014-04-01
2014-01-0784
The failure modes of gas metal arc welds in notched lap-shear specimens of high strength low alloy (HSLA) steel are investigated. Notched lap-shear specimens of gas metal arc welds were first made. Quasi-static test results of the notched lap-shear specimens showed two failure locations for the welds. The specimens cut from coupons with shorter weld lengths failed near the weld root whereas the specimens cut from coupons with longer weld lengths failed near the weld toe. Micro-hardness tests were conducted in order to provide an assessment of the mechanical properties of the base metal, the heat affected zone, and the weld metal. In order to understand the failure modes of these welds, finite element models were developed with the geometric characteristics of the weld metals and heat affected zones designed to match those of the micrographs of the cross sections for the long and short welds.
Journal Article

Effects of Non-Associated Flow on Residual Stress Distributions in Crankshaft Sections Modeled as Pressure-Sensitive Materials under Fillet Rolling

2015-04-14
2015-01-0602
In this paper, the evolution equation for the active yield surface during the unloading/reloading process based on the pressure-sensitive Drucker-Prager yield function and a recently developed anisotropic hardening rule with a non-associated flow rule is first presented. A user material subroutine based on the anisotropic hardening rule and the constitutive relation was written and implemented into the commercial finite element program ABAQUS. A two-dimensional plane strain finite element analysis of a crankshaft section under fillet rolling was conducted. After the release of the roller, the magnitude of the compressive residual hoop stress for the material with consideration of pressure sensitivity typically for cast irons is smaller than that without consideration of pressure sensitivity. In addition, the magnitude of the compressive residual hoop stress for the pressure-sensitive material with the non-associated flow rule is smaller than that with the associated flow rule.
Journal Article

Stress Intensity Factor Solutions for Gas Metal Arc Welds in Lap-Shear Specimens

2015-04-14
2015-01-0708
In this paper, mode I and mode II stress intensity factor solutions for gas metal arc welds in single lap-shear specimens are investigated by the analytical stress intensity factor solutions and by finite element analyses. Finite element analyses were carried out in order to obtain the computational stress intensity factor solutions for both realistic and idealized weld geometries. The computational results indicate that the stress intensity factor solutions for the realistic welds are lower than the analytical solutions for the idealized weld geometry. The computational results can be used for the estimation of fatigue lives in a fatigue crack growth model under mixed mode loading conditions for gas metal arc welds.
Journal Article

Stress Intensity Factor Solutions for Dissimilar Welds in Lap-Shear Specimens of Steel, Magnesium, Aluminum and Copper Sheets

2015-04-14
2015-01-1754
In this paper, the analytical stress intensity factor and J integral solutions for welds in lap-shear specimens of two dissimilar sheets based on the beam bending theory are first reviewed. The solutions are then presented in the normalized forms. Next, two-dimensional finite element analyses were selectively conducted to validate the analytical solutions based on the beam bending theory. The interface crack parameters, the stress intensity factor solutions, and the J integral solutions for welds in lap-shear specimens of different combinations of steel, aluminum, and magnesium, and the combination of aluminum and copper sheets of different thickness ratios are then presented for convenient fracture and fatigue analyses. The transition thickness ratios for critical crack locations for different combinations of dissimilar materials are then determined from the analytical solutions.
Journal Article

Residual Stress Distributions in Rectangular Bars Due to High Rolling Loads

2016-04-05
2016-01-0424
In this paper, residual stress distributions in rectangular bars due to rolling or burnishing at very high rolling or burnishing loads are investigated by roll burnishing experiments and three-dimensional finite element analyses using ABAQUS. First, roll burnishing experiments on rectangular bars at two roller burnishing loads are presented. The results indicate the higher burnishing load induces lower residual stresses and the higher burnishing load does not improve fatigue lives. Next, in the corresponding finite element analyses, the roller is modeled as rigid and the roller rolls on the flat surface of the bar with a low coefficient of friction. The bar material is modeled as an elastic-plastic strain hardening material with a nonlinear kinematic hardening rule for loading and unloading.
Journal Article

Stress Intensity Factor Solutions for Welds in Lap-Shear Specimens under Clamped Loading Conditions

2016-04-05
2016-01-0504
Analytical stress intensity factor solutions for welds in lap-shear specimens of equal thickness under pinned and clamped loading conditions based on the beam bending theory are presented and examined. Finite element analyses are also employed to obtain the stress intensity factor solutions for welds in lap-shear specimens under both clamped and pinned loading conditions. The computational solutions are compared well with the analytical solutions. The results of the analytical and computational solutions indicate that the bending moments at the clamped edges reduce the mode I and II stress intensity factor solutions by about 7% to 10% for the given specimen geometry. The effects of the clamped grips depend on the ratio of the weld width to the specimen length. Comparisons of the stress intensity factor solutions suggest that the fatigue lives of the welds in lap-shear specimens under clamped loading conditions should be higher than those under pinned loading conditions.
Journal Article

Fatigue Failure of Laser Welds in Lap-Shear Specimens of High Strength Low Alloy (HSLA) Steels under Cyclic Loading Conditions

2011-04-12
2011-01-0473
In this paper, the fatigue behavior of laser welds in lap-shear specimens of non-galvanized SAE J2340 300Y high strength low alloy (HSLA) steel sheets is investigated based on experimental observations and a fatigue life estimation model. Optical micrographs of the laser welds before and after failure under quasi static and cyclic loading conditions are examined. The micrographs show that the failure modes of laser welds under quasi-static and cyclic loading conditions are quite different. Under quasi-static loading conditions, the weld failure appears to be initiated from the base metal near the boundary of the base metal and the heat affected zone at a distance to the pre-existing crack tip, and the specimens fail due to the necking/shear of the lower left load carrying sheets.
Journal Article

Effects of Roller Diameter and Number on Fatigue Lives of Cam Roller Follower Bearings

2011-04-12
2011-01-0489
Effects of roller diameter and number on the contact pressures, subsurface stresses and the fatigue lives of cam roller follower bearings are investigated in this paper. Finite element analyses under plane strain conditions were conducted to identify the effects of the diameter and number of the rolling elements and the thickness of the outer ring. The fatigue life of the inner pin generally increases as the roller diameter increases. But, reducing the number of rollers to accommodate larger rollers does not necessarily increase the fatigue life. The inevitable decrease of the thickness of the outer ring due to the increase of the roller diameter results in the increase of compliance for the outer ring. This increase of compliance leads to excessive deformation of the outer ring and consequently more load must be carried by fewer number of rolling elements.
Journal Article

Effect of a Deformable Roller on Residual Stress Distribution for Elastic-Plastic Flat Plate Rolling under Plane Strain Conditions

2012-04-16
2012-01-0190
In this paper, the differences of the residual stresses due to rolling in a finite elastic-plastic plate by rigid and elastic deformable rollers at very high rolling loads are investigated by two-dimensional plane strain finite element analyses using ABAQUS. In the finite element analyses, the rollers are modeled both as rigid and linear elastic, and have frictionless contact with the elastic-plastic finite plate. The plate material is modeled as an elastic-plastic power-law strain hardening material with a non-linear kinematic hardening rule for loading and unloading. Two new numerical schemes are developed to represent the elastic roller to model the indentation and rolling. The results of the contact pressure and subsurface stress distributions from the two numerical schemes are almost identical.
Technical Paper

Fatigue Behaviors of Aluminum 5754-O Spot Friction Welds in Lap-Shear Specimens

2008-04-14
2008-01-1139
Fatigue behaviors of aluminum 5754-O spot friction welds made by a concave tool in lap-shear specimens are investigated based on experimental observations and a fatigue life estimation model. Optical micrographs of the welds before and after failure under quasi-static and cyclic loading conditions are examined. The micrographs indicate that the failure modes of the 5754 spot friction welds under quasi-static and cyclic loading conditions are quite different. The dominant kinked fatigue cracks for the final failures of the welds under cyclic loading conditions are identified. Based on the experimental observations of the paths of the dominant kinked fatigue cracks, a fatigue life estimation model based on the stress intensity factor solutions for finite kinked cracks is adopted to estimate the fatigue lives of the welds.
Technical Paper

Failure Mode of Laser Welds in Lap-Shear Specimens of HSLA Steel

2010-04-12
2010-01-0973
Failure mode of laser welds in lap-shear specimens of high strength low alloy (HSLA) steel is investigated in this paper. The experimental results from quasi-static tests show that the laser welds failed in a ductile necking/shear failure mode near the heat affected zone. In order to understand the failure mode of these welds, a finite element analysis under plane strain conditions was conducted to identify the effects of the different plastic behaviors of the base metal, heat affected zone, and weld metal on the ductile failure. The results of the finite element analysis show that the higher effective stress-plastic strain curves of the weld metal and the heat affected zone results in the necking/shear failure mode. The deformed shape of the finite element model near the weld matches well with that of a failed weld.
Technical Paper

An Analytical Load Distribution Solution for Bearings

2012-04-16
2012-01-0756
An analytical load distribution solution for calculation of the loads exerted by the rolling elements on the outer raceway in cylindrical roller bearings under radial loading is proposed in this paper. The loads exerted by the rolling elements are obtained based on an assumption that the profile of the maximum contact pressures of rolling elements resemble the profile of the contact pressure of the corresponding lumped cylinder. Based on this assumption, an analytical load distribution solution which gives the loads exerted by the rolling elements on the outer raceway is derived based on the non-conforming contact solution of Hertz and the conforming contact solution of Persson. These loads can be calculated from the analytical solution with the total applied load and the normalized contact pressure profile of the corresponding lumped cylinder. Two-dimensional finite element analysis was conducted to validate the proposed analytical solutions.
Technical Paper

Finite Element Analyses of Macroscopic Stress-Strain Relations and Failure Modes for Tensile Tests of Additively Manufactured AlSi10Mg with Consideration of Melt Pool Microstructures and Pores

2023-04-11
2023-01-0955
Finite element (FE) analyses of macroscopic stress-strain relations and failure modes for tensile tests of additively manufactured (AM) AlSi10Mg in different loading directions with respect to the building direction are conducted with consideration of melt pool (MP) microstructures and pores. The material constitutive relations in different orientations of AM AlSi10Mg are first obtained from fitting the experimental tensile engineering stress-strain curves by conducting axisymmetric FE analyses of round bar tensile specimens. Four representative volume elements (RVEs) with MP microstructures with and without pores are identified and selected based on the micrographs of the longitudinal cross-sections of the vertical and horizontal tensile specimens. Two-dimensional plane stress elastic-plastic FE analyses of the RVEs subjected to uniaxial tension are then conducted.
Technical Paper

Determination of Assembly Stresses in Aluminum Knuckles

1999-03-01
1999-01-0345
In this paper, an analytical method is proposed for determining the stress distributions in steering knuckle/tapered stud assemblies. The method is based on solutions of the plane stress thick cylinder interference fit problem with modifications to account for the effects of stud taper and dissimilar component materials. The analytical solutions are applied to knuckle/tapered stud assemblies. The results from the analytical solutions are compared to those from a finite element analysis. It is shown that the analytical and FEA results are in good agreement for several load and frictional conditions, and the hoop and radial stress solutions presented in this paper are good engineering solutions to the knuckle/tapered stud problem where the draw distance is provided.
Journal Article

Closed-Form Structural Stress Solutions for Spot Welds in Square Plates under Central Bending Conditions

2019-04-02
2019-01-1114
A new closed-form structural stress solution for a spot weld in a square thin plate under central bending conditions is derived based on the thin plate theory. The spot weld is treated as a rigid inclusion and the plate is treated as a thin plate. The boundary conditions follow those of the published solution for a rigid inclusion in a square plate under counter bending conditions. The new closed-form solution indicates that structural stress solution near the rigid inclusion on the surface of the plate along the symmetry plane is larger than those for a rigid inclusion in an infinite plate and a finite circular plate with pinned and clamped outer boundaries under central bending conditions. When the radius distance becomes large and approaches to the outer boundary, the new analytical stress solution approaches to the reference stress whereas the other analytical solutions do not.
Journal Article

Finite Element Analyses of Structural Stresses near Dissimilar Spot Joints in Lap-Shear Specimens

2019-04-02
2019-01-1112
Structural stress distributions near nearly rigid, dissimilar and similar spot joints in lap-shear specimens are investigated by 3-D finite element analyses. A set of accurate closed-form structural stress solutions is first presented. The closed-form structural stress solutions were derived for a rigid inclusion in a square thin plate under various loading conditions with the weak boundary conditions along outer edges or semi-circular paths by satisfying the equilibrium conditions. Finite element analyses with different joint material behaviors, element types and mesh designs are conducted to examine the structural stress solutions near the spot joints in lap-shear specimens. The results of the finite element analyses indicate that the computational structural stress solutions on the edge of the joint depend on the joint material behavior, element type, and mesh design.
Journal Article

Closed-Form Structural Stress Solutions for Fatigue Life Estimations of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets

2017-03-28
2017-01-0470
Closed-form structural stress solutions are investigated for fatigue life estimations of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets with and without clearance hole based on three-dimensional finite element analyses. The closed-form structural stress solutions for rigid inclusions under counter bending, central bending, in-plane shear and in-plane tension are first presented. Three-dimensional finite element analyses of the lap-shear specimens with FDS joints without and with gap (with and without clearance hole) are then presented. The results of the finite element analyses indicate that the closed-form structural stress solutions are quite accurate at the critical locations near the FDS joints in lap-shear specimens without and with gap (with and without clearance hole) for fatigue life predictions.
Journal Article

Finite Element Analyses of Stress Intensity Factor Solutions for Discontinuous Gas Metal Arc Welds under Lap-Shear Loading Conditions

2017-03-28
2017-01-0475
The distributions of the mode I and mode II stress intensity factor solutions along the fronts of the pre-existing cracks of continuous and discontinuous gas metal arc welds in lap-shear specimens are investigated by three-dimensional finite element analyses. Two-dimensional plane strain finite element analyses were first carried out in order to obtain the computational stress intensity factor solutions for the idealized and realistic weld geometries as the references. Further, the stress intensity factor solutions for realistic welds obtained from the two-dimensional finite element analyses are presented for unequal sheet thicknesses for future engineering applications. Then the stress intensity factor solutions for continuous and discontinuous welds were obtained by three-dimensional finite element analyses.
X