Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Fuel Spray Combustion of Waste Cooking Oil and Palm Oil Biodiesel: Direct Photography and Detailed Chemical Kinetics

2013-10-14
2013-01-2554
This paper studies the ignition processes of two biodiesel from two different feedstock sources, namely waste cooked oil (WCO) and palm oil (PO). They were investigated using the direct photography through high-speed video observations and detailed chemical kinetics. The detailed chemical kinetics modeling was carried out to complement data acquired using the high-speed video observations. For the high-speed video observations, an image intensifier combined with OH* filter connected to a high-speed video camera was used to obtain OH* chemiluminscence image near 313 nm. The OH* images were used to obtain the experimental ignition delay of the biodiesel fuels. For the high-speed video observations, experiments were done at an injection pressure of 100, 200 and 300 MPa using a 0.16 mm injector nozzle.
Technical Paper

Effect of Swirl Rate on Mixture Formation in a Spark Ignition Engine Based on Laser 2-D Visualization Techniques

1993-11-01
931905
The mixture distribution and in-cylinder flow field inside the combustion chamber of a spark ignition engine with a swirl control intake system were measured by a pair of laser two-dimensional visualization techniques. The planer-laser-induced exciplex fluorescence technique was used to visualize the in-cylinder mixture formation by obtaining spectrally separated fluorescence images of liquid and vapor phase fuel distributions. The particle image velocimetry (PIV) was used to obtain the images of in-cylinder flow field. Experiments were carried out under various swirling conditions (from high [Rs=3.8] to low [Rs=0.4] swirl rates) to clarify the effect of swirl rate on mixture formation during the intake and compression strokes. Under the high swirling condition, fuel vapor was spread and rotated along the cylinder wall by the swirling flow during the compression stroke.
Technical Paper

In-Cylinder Fuel Distribution, Flow Field, and Combustion Characteristics of a Mixture Injected SI Engine

1995-02-01
950104
In order to control the mixture formation, a mixture injected 4-valve SI engine was developed with a small mixture chamber and mechanically driven mixture injection valve installed into the cylinder head. The mixture injection valve was located at the center of the combustion chamber. The mixture was injected from the final stage of the intake stroke to the beginning of the compression stroke. The mixture distribution and in-cylinder flow field inside the combustion chamber were measured by a pair of laser two-dimensional visualization techniques. A planar-laser-induced exciplex fluorescence technique was used to visualize the in-cylinder mixture formation by obtaining spectrally separated fluorescence images of liquid and vapor phase fuel distribution. Particle image velocimetry (PIV) was used to obtain flow field images. In the case of the mixture injected SI engine, the mixture injected into the swirl center was retained during the compression stroke.
Technical Paper

Influence of Mixture Stratification Patter non Combustion Characteristics in a Constant-Volume Combustion Chamber

1995-10-01
952412
A pancake-type constant-volume combustion chamber was used to investigate the combustion and NOx emission characteristics of propane-air and hydrogen-air mixtures under various charge stratification patterns, which were obtained by variations of the initial charge and injected mixture concentrations and the ignition spark timing. A planar laser-induced fluorescence from nitrogen dioxide as gas fuel tracer was applied to measure the mixture distribution in the test chamber. The second harmonic output of pulsed Nd; YAG laser was used as a light source for fluorescence excitation. The fluorescence images were corrected by a gated image-intensified CCD camera. The quantitative analysis of fuel concentration was made possible by the application of linearity between fluorescence intensity and NO2 concentration at low trace level.
Technical Paper

Planar Measurements of NO in an S.I. Engine Based on Laser Induced Fluorescence

1997-02-24
970877
To investigate NO formation in a combustion flame, PLIF (Planar Laser-Induced-Fluorescence) technique was applied to measure the NO fluorescence distribution in a constant-volume combustion chamber and in a sparkignition engine. The NO fluorescence distribution was taken by an image intensified CCD camera. In the constant-volume combustion chamber, the high NO fluorescence intensity was concentrically observed in the thin flame zone along the flame front. In postflame gas behind the flame zone, the NO fluorescence was widely distributed with weak intensity. In the case of the engine, the fluorescence was distributed in the broad flame zone. The fluorescence intensity had high value near the flame front, and decreased from the flame front to the postflame gas. As the equivalence ratio was changed, the fluorescence intensity reached maximum value at slightly lean condition.
Technical Paper

Control of Ignition Timing and Combustion Phase by Means of Injection Strategy for Jet-Controlled Compression Ignition Mode in a Light Duty Diesel Engine

2020-04-14
2020-01-0555
Controllability of ignition timing and combustion phase by means of dual-fuel direct injection strategy in jet-controlled compression ignition mode were investigated in a light-duty prototype diesel engine. Blended fuel with lower reactivity was delivered in the early period of compression stroke to form the premixed charge, while diesel fuel which has higher reactivity was injected near TDC to trigger the ignition. The effects of several important injection parameters including pre-injection timing, jet-injection timing, pre- injection pressure and ratio of pre-injection in the total heat value of injected fuel were discussed. Numerical Simulation by using CFD software was also conducted under similar operating conditions. The experimental results indicate that the jet-injection timing shows robust controllability on the start of combustion under all the engine load conditions.
X