Refine Your Search

Topic

Author

Search Results

Journal Article

Modeling of Adaptive Energy Absorbing Steering Columns for Dynamic Impact Simulations

2014-04-01
2014-01-0802
The objective of this paper focused on the modeling of an adaptive energy absorbing steering column which is the first phase of a study to develop a modeling methodology for an advanced steering wheel and column assembly. Early steering column designs often consisted of a simple long steel rod connecting the steering wheel to the steering gear box. In frontal collisions, a single-piece design steering column would often be displaced toward the driver as a result of front-end crush. Over time, engineers recognized the need to reduce the chance that a steering column would be displaced toward the driver in a frontal crash. As a result, collapsible, detachable, and other energy absorbing steering columns emerged as safer steering column designs. The safety-enhanced construction of the steering columns, whether collapsible, detachable, or other types, absorb rather than transfer frontal impact energy.
Journal Article

Modeling of an Advanced Steering Wheel and Column Assembly for Frontal and Side Impact Simulations

2014-04-01
2014-01-0803
This paper presents the final phase of a study to develop the modeling methodology for an advanced steering assembly with a safety-enhanced steering wheel and an adaptive energy absorbing steering column. For passenger cars built before the 1960s, the steering column was designed to control vehicle direction with a simple rigid rod. In severe frontal crashes, this type of design would often be displaced rearward toward the driver due to front-end crush of the vehicle. Consequently, collapsible, detachable, and other energy absorbing steering columns emerged to address this type of kinematics. These safety-enhanced steering columns allow frontal impact energy to be absorbed by collapsing or breaking the steering columns, thus reducing the potential for rearward column movement in severe crashes. Recently, more advanced steering column designs have been developed that can adapt to different crash conditions including crash severity, occupant mass/size, seat position, and seatbelt usage.
Journal Article

Side Crash Pressure Sensor Prediction: An Improved Corpuscular Particle Method

2012-04-16
2012-01-0043
In an attempt to predict the responses of side crash pressure sensors, the Corpuscular Particle Method (CPM) was adopted and enhanced in this research. Acceleration-based crash sensors have traditionally been used extensively in automotive industry to determine the air bag firing time in the event of a vehicle accident. The prediction of crash pulses obtained from the acceleration-based crash sensors by using computer simulations has been very challenging due to the high frequency and noisy responses obtained from the sensors, especially those installed in crash zones. As a result, the sensor algorithm developments for acceleration-based sensors are largely based on prototype testing. With the latest advancement in the crash sensor technology, side crash pressure sensors have emerged recently and are gradually replacing acceleration-based sensor for side impact applications.
Journal Article

Side Crash Pressure Sensor Prediction: An ALE Approach

2012-04-16
2012-01-0046
An Arbitrary Lagrangian Eulerian (ALE) approach was adopted in this study to predict the responses of side crash pressure sensors in an attempt to assist pressure sensor algorithm development by using computer simulations. Acceleration-based crash sensors have traditionally been used to deploy restraint devises (e.g., airbags, air curtains, and seat belts) in vehicle crashes. The crash pulses recorded by acceleration-based crash sensors usually exhibit high frequency and noisy responses depending on the vehicle's structural design. As a result, it is very challenging to predict the responses of acceleration-based crash sensors by using computer simulations, especially those installed in crush zones. Therefore, the sensor algorithm developments for acceleration-based sensors are mostly based on physical testing.
Journal Article

Side Crash Pressure Sensor Prediction for Unitized Vehicles: An ALE Approach

2013-04-08
2013-01-0657
With a goal to help develop pressure sensor calibration and deployment algorithms using computer simulations, an Arbitrary Lagrangian Eulerian (ALE) approach was adopted in this research to predict the responses of side crash pressure sensors for unitized vehicles. For occupant protection, acceleration-based crash sensors have been used in the automotive industry to deploy restraint devices when vehicle crashes occur. With improvements in the crash sensor technology, pressure sensors that detect pressure changes in door cavities have been developed recently for vehicle crash safety applications. Instead of using acceleration (or deceleration) in the acceleration-based crash sensors, the pressure sensors utilize pressure change in a door structure to determine the deployment of restraint devices. The crash pulses recorded by the acceleration-based crash sensors usually exhibit high frequency and noisy responses.
Journal Article

Side Crash Pressure Sensor Prediction for Body-on-Frame Vehicles: An ALE Approach

2013-04-08
2013-01-0666
In an attempt to assist pressure sensor algorithm and calibration development using computer simulations, an Arbitrary Lagrangian Eulerian (ALE) approach was adopted in this study to predict the responses of side crash pressure sensors for body-on-frame vehicles. Acceleration based, also called G-based, crash sensors have been used extensively to deploy restraint devices, such as airbags, curtain airbags, seatbelt pre-tensioners, and inflatable seatbelts, in vehicle crashes. With advancements in crash sensor technologies, pressure sensors that measure pressure changes in vehicle side doors have been developed recently and their applications in vehicle crash safety are increasing. The pressure sensors are able to detect and record the dynamic pressure change when the volume of a vehicle door changes as a result of a crash.
Technical Paper

NHTSA Passenger Car Side Impact Dynamic Test Procedure - Test-To-Test Variability Estimates

1991-02-01
910603
A highly controlled six-vehicle crash test program was conducted to provide an estimate of the test-to-test variability of the NHTSA-proposed passenger car dynamic side impact test procedure. The results of this program showed that the rear seat test dummy response measurements are especially sensitive to various parameters of the test procedure. This paper provides estimates of front and rear seated SID dummy response measurement variability in four-door, 1990 Ford Taurus vehicles. Conclusions and recommendations from this controlled crash test program are made to provide guidance to help reduce the test-to-test variability of the test dummy responses.
Technical Paper

Dummy Models for Crash Simulation in Finite Element Programs

1991-10-01
912912
The development of combined finite element and spring / rigid mass crash simulation dummy models for automotive applications is described. In order to better understand the crash phenomena and occupant kinematics during vehicle crashes, recent developments have been focused on the use of finite element techniques in the simulation of both structure and structure / dummy interactions. The combination of spring /rigid mass modeling and finite element technique is used to develop models of fiftieth percentile Hybrid III and Side impact Dummies in a finite element program (RADIOSS). In general, the dummies are modeled with rigid masses and joints with techniques similar to those used in Crash Victim Simulation programs like MADYMO and CAL3D. Only selected components, like the Hybrid III dummy thorax and the SID pelvis and jacket, are modeled with finite element shell and brick elements to improve dummy / restraint system and dummy / structure interaction responses.
Technical Paper

Archetypal Vehicle Dynamics Model for Resistance Rollover Prediction

2010-04-12
2010-01-0715
Nowadays is a common sense the importance of the CAE usage in the modern automotive industry. The ability to predict the design behavior of a project represents a competitive advantage. However, some CAE models have become so complex and detailed that, in some cases, one just can not build up the model without a considerable amount of information. In that case simplified models play an important role in the design phase, especially in pre-program stages. This work intends to build an archetypal vehicle dynamics model able to predict the rollover resistance of a vehicle design. Through the study of a more complex model, carried out in Adams environment, it was possible to identify the key degrees of freedom to be considered in the simplified model along with important elements of the suspension which are also important design factors.
Technical Paper

Finite element simulation of drive shaft in truck/SUV frontal crash

2001-06-04
2001-06-0106
Drive shaft modelling effects frontal crash finite element simulation. A 35 mph rigid barrier impact of a body on frame SUV with an one piece drive shaft and a unibody SUV with a two piece drive shaft have been studied and simulated using finite element analyses. In the model, the drive shaft can take significant load in frontal impact crash. Assumptions regarding the drive shaft model can change the predicted engine motion in the simulation. This change influences the rocker @ B-pillar deceleration. Two modelling methods have been investigated in this study considering both joint mechanisms and material failure in dynamic impact. Model parameters for joint behavior and failure should be determined from vehicle design information and component testing. A body on frame SUV FEA model has been used to validate the drive shaft modeling technique by comparing the simulation results with crash test data.
Technical Paper

Development of a Finite Element Based Model of the Side Impact Dummy

1993-03-01
930444
Numerical simulation techniques are commonly used to assess the crash performance of automobiles and guide their design during the development stage. Mathematical models of vehicle structures, restraint systems and dummies are developed and verified under different test conditions to ensure an effective usage during their application in the study of a crash situation. This paper describes the development and validation of a finite element model of the US Department of Transportation (DOT) side impact dummy (SID). The geometry of the dummy parts is represented by shell and solid elements created from a digital scan of the dummy and the material properties are derived from quasi-static tests of each component. Springs and rigid bodies are added to represent the shock absorber and certain rigid parts such as the femur and ilium. The model verification is carried out by subjecting the dummy to twenty four impact conditions and comparing the simulations to test results.
Technical Paper

Evaluation of the BIOSID Pelvis

1993-03-01
930442
Biomechanically-based test surrogates are a valuable tool when used to evaluate side impact protection strategies, particularly when their responses are understood relative to dummy injury reference values. Test surrogates such as the BIOSID and EUROSID-1 side impact dummies have anatomically located pelvic load cells to help describe in varying degrees the pelvic load paths and help indicate the potential for pelvic injury. From a rigid body analysis, it was determined that the BIOSID pelvic structure can be separated into two rigid bodies due to load cell placement. A new configuration for the sacrum load cell is proposed for the BIOSID pelvis. Hammer impact tests were conducted on the BIOSID pelvis. The tests identified the load paths through the pelvis and indicated the relationship between the load cells. From rigid wall sled tests, the pelvis load cells were summed to identify the applied total external load.
Technical Paper

Experimental Validation of Ellipsoid-to-Foam Contact Model

1994-03-01
940881
This report describes an experimental validation of an ellipsoid-to-foam contact model. A series of static foam tests was conducted using Side Impact Dummy rib cage, pelvis, upper leg, and wooden ellipsoids as impactors to validate a theoretical foam contact model previously developed. Predicted results of contact forces, calculated using the uni-axial stress-strain relationship and contact areas, yield good correlation with the test data. These studies used CFC foams and were conducted prior to switching to water-blown foam material development. The ellipsoid-to-foam contact model is being integrated into a MADYMO side impact model. The MADYMO/foam simulation model can then be used to help evaluate design variable tradeoffs (e.g., door thickness vs. body side structures and foam padding requirement vs. interior package) thereby reducing the current dependency on testing, bolster development time, and cost.
Technical Paper

Dynamic Door Component Test Methodology

1995-02-01
950877
This paper describes the development of a Dynamic Door Component Test Methodology (DDCTM) for side impact simulation. A feasibility study of the methodology was conducted using a MADYMO computer model by taking parameters such as door pre-crush, door-to-SID (Side Impact Dummy) contact velocity and the deceleration profile into consideration. The prove-out tests of this methodology was carried out on a dynamic sled test facility. The DDCTM has been validated for various carlines. In addition, various existing dynamic component test methods are reviewed. In our approach, a pre-crushed door, mounted on a sled, strikes a stationary SID at a pre-determined velocity. A programmable hydraulic decelerator is used to decelerate the sled to simulate the barrier/door deceleration pulse during door-to-SID contact period. This test procedure provides excellent correlation of the SID responses between the component test and the full-scale vehicle test.
Technical Paper

Head Injury Potential Assessment in Frontal Impacts by Mathematical Modeling

1994-11-01
942212
The potential of head injury in frontal barrier impact tests was investigated by a mathematical model which consisted of a finite element human head model, a four segments rigid dynamic neck model, a rigid body occupant model, and a lumped-mass vehicle structure model. The finite element human head model represents anatomically an average adult head. The rigid body occupant model simulates an average adult male. The structure model simulates the interior space and the dynamic characteristics of a vehicle. The neck model integrates the finite element human head to the occupant body to give a more realistic kinematic head motion in a barrier crash test. Model responses were compared with experimental cadaveric data and vehicle crash data for the purpose of model validation to ensure model accuracy. Model results show a good agreement with those of the tests.
Technical Paper

A Crash Simulation of Instrument Panel Knee Bolster Using Hybrid III Dummy Lower Torso

1995-02-01
951067
This paper reports the analytical procedure developed for a simulation of knee impact during a barrier crash using a hybrid III dummy lower torso. A finite element model of the instrument panel was generated. The dummy was seated in mid-seat position and was imparted an initial velocity so that the knee velocity at impact corresponded to the secondary impact velocity during a barrier crash. The procedure provided a reasonably accurate simulation of the dummy kinematics. This simulation can be used for understanding the knee bolster energy management system. The methodology developed has been used to simulate impact on knee for an occupant belted or unbelted in a frontal crash. The influence of the vehicle interior on both the dummy kinematics and the impact locations was incorporated into the model. No assumptions have been made for the knee impact locations, eliminating the need to assume knee velocity vectors.
Technical Paper

Research and Development for Lower Lateral Force Armrests

1995-11-01
952734
While evaluating the BIOSID advanced side impact dummy in full scale crash tests, we noticed higher than expected abdominal rib deflections. This finding led to a search to determine whether these deflections were an artifact of the dummy or whether the dummy was indicating that some portion of the vehicle side, in the area of the armrest, was laterally stronger than expected. Many armrests/trim panels were procured and both quasi-statically and dynamically tested using newly-devised test procedures. A team was formed to evaluate armrest/trim panel construction and to develop a biomechanically-based laboratory test procedure to help determine the effects of design and material changes. This team continues to function and a spin-off team is seeking to develop analytical predictive tools to allow speedier development of armrest/trim panels attuned to the new test procedure.
Technical Paper

Intrusion Factors and Their Effects on Steering Column Movements During Vehicle's Frontal Impact Testing

1997-02-24
970573
Significant dashpanel intrusion is seen in some cars after severe frontal crashes at high speeds or after offset impact with rigid barrier or both. This intrusion may also result in severe steering column displacements and rotation. Knowledge of both responses is critical for designing an efficient vehicle front end that will respond well in crash. The intrusion has an effect on deciding the car front end length, while the column movements have an effect on the driver dummy's response. For reasons of developing efficiency and safety in vehicles and due to lack of published research, studies were conducted to understand the nature of the intrusion phenomenon as well as the mechanics of the steering column movement in the presence of intrusion. This paper describes an experimental investigation on intrusion and steering column movements.
Technical Paper

Development of a Door Test Facility for Implementing the Door Component Test Methodology

1997-02-24
970568
This paper describes the development of an automated Door Test Facility for implementing the Door Component Test Methodology for side impact analysis. The automated targeting and loading of the door inner/trim panels with Side Impact Dummy (SID) ribcage, pelvis, and leg rams will greatly improve its test-to-test repeatability and expedite door/trim/armrest development/evaluation for verification with the dynamic side impact test of FMVSS 214 (Occupant Side Impact Protection). This test facility, which is capable of evaluating up to four (4) doors per day, provides a quick evaluation of door systems. The results generated from this test methodology provide accurate input data necessary for a MADYMO Side Impact Simulation Model. The test procedure and simulation results will be discussed.
Technical Paper

Finite Element Model Development of the BioSID

1997-02-24
971140
A complete finite element model of the BioSID side impact dummy was created using the finite element code RADIOSS. The objective of this work was to develop an accurate and stable dummy model, which can capture the dummy behavior due to a localized impact or in a full-scale side impact finite element model with reasonable CPU time. This warranted the development of a detailed dummy model which reflects the BioSID geometrically and has material characteristics similar to the physical dummy. This paper describes the stages of the model development and discusses the issues which influence the accuracy of the dummy model predictions. It also shows comparisons of the dummy model responses and kinematics with a series of sled test data and calibration tests specified in the BioSID User's Manual.
X