Refine Your Search

Topic

Author

Affiliation

Search Results

Video

BMW i3 - A Battery Electric Vehicle...Right from the Beginning

2012-03-29
What are the requirements of customers in an urban environment? What will sustainable mobility look like in the future? This presentation gives an overview of the integrated approach used by BMW to develop the BMW i3 - a purpose-built battery electric vehicle. Very low driving resistances for such a vehicle concept enable the delivery of both impressive range and driving excitement. A small optional auxiliary power unit offers range security for unexpected situations and opens up BEVs to customers who are willing to buy a BEV but are still hesitant due to range anxiety. Additional electric vehicles sold to the formerly range anxious will create additional electric miles. Presenter Franz Storkenmaier, BMW Group
Journal Article

A New Approach to Analyzing Cooling and Interference Drag

2010-04-12
2010-01-0286
This paper presents a new approach to analyzing and developing low-drag cooling systems. A relation is derived which describes cooling drag by a number of contributions. Interference drag clearly can be identified as one of them. Cooling system parameters can be assigned to different terms of the relation, so that differences due to parameter variations of the individual drag contributions can be estimated. In order to predict the interference-drag dependency on the outlet location and the local outlet mass flow, an extensive study on a standard BMW sedan has been carried out, both experimentally and by CFD. The results show the importance of providing consistent outflow conditions which take into account the outlet location and flow direction, in order to minimize cooling drag.
Journal Article

Issues Exporting a Multibody Dynamics System Model into a Finite Element Analysis Model

2010-04-12
2010-01-0947
Nowadays there is an increasing need to streamline CAE processes. One such process consists of translating a Multibody Dynamics System (MBS) model into an equivalent Finite Element Analysis (FEA) model. Typically, users start with the creation of a MBS model which is set at a desired operating point by means of running simulations in the MBS domain (e.g. dynamics, statics.) The MBS model is then further translated into an equivalent FEA model which is used to perform simulations in the FEA domain (e.g. passive safety/crash, noise vibration harshness/NVH.) Currently, the translation of the MBS model into a FEA model is done either manually or by means of using a user-written script. This paper shows that a user-written script that translates a MBS model into a FEA model can not provide a high fidelity translation. In general, it is found that eigenvalues computed by the FEA code would not match eigenvalues computed by the MBS code.
Journal Article

Changing the Substrate Technology to meet Future Emission Limits

2010-05-05
2010-01-1550
Future stringent emission legislation will require high efficient catalytical systems. Along with engine out emission reduction and advanced wash coat solution the substrate technology will play a key role in order to keep system costs as low as possible. The development of metallic substrates over the past few years has shown that turbulent-like substrates increase specific catalytic efficiency. This has made it possible to enhance overall performance for a specific catalytic volume or reduce the volume while keeping catalytic efficiency constant. This paper focuses on the emission efficiency of standard, TS (Transversal Structure) and LS (Longitudinal Structure) metallic substrates. In a first measurement program, standard TS and LS substrates have been compared using a 150cc 4 Stroke engine in dynamic (ECE R40) conditions. In a second test standard and LS substrate have been tested.
Journal Article

Simulation of Underbody Contribution of Wind Noise in a Passenger Automobile

2013-05-13
2013-01-1932
Wind noise is a significant source of interior noise in automobiles at cruising conditions, potentially creating dissatisfaction with vehicle quality. While wind noise contributions at higher frequencies usually originate with transmission through greenhouse panels and sealing, the contribution coming from the underbody area often dominates the interior noise spectrum at lower frequencies. Continued pressure to reduce fuel consumption in new designs is causing more emphasis on aerodynamic performance, to reduce drag by careful management of underbody airflow at cruise. Simulation of this airflow by Computational Fluid Dynamics (CFD) tools allows early optimization of underbody shapes before expensive hardware prototypes are feasible. By combining unsteady CFD-predicted loads on the underbody panels with a structural acoustic model of the vehicle, underbody wind noise transmission could be considered in the early design phases.
Journal Article

New Methodology for Transient Engine Rig Experiments for Efficient Parameter Tuning

2013-12-20
2013-01-9043
When performing catalyst modeling and parameter tuning it is desirable that the experimental data contain both transient and stationary points and can be generated over a short period of time. Here a method of creating such concentration transients for a full scale engine rig system is presented. The paper describes a valuable approach for changing the composition of engine exhaust gas going to a DOC (or potentially any other device) by conditioning the exhaust gas with an additional upstream DOC and/or SCR. By controlling the urea injection and the DOC bypass a wide range of exhaust compositions, not possible by only controlling the engine, could be achieved. This will improve the possibilities for parameter estimation for the modeling of the DOC.
Journal Article

An Innovative Approach to Race Track Simulations for Vehicle Thermal Management

2013-11-20
2013-01-9121
Within the pre-development phase of a vehicle validation process, the role of computational simulation is becoming increasingly prominent in efforts to ensure thermal safety. This gain in popularity has resulted from the cost and time advantages that simulation has compared to experimental testing. Additionally many of these early concepts cannot be validated through experimental means due to the lack of hardware, and must be evaluated via numerical methods. The Race Track Simulation (RTS) can be considered as the final frontier for vehicle thermal management techniques, and to date no coherent method has been published which provides an efficient means of numerically modeling the temperature behavior of components without the dependency on statistical experimental data.
Journal Article

The Development of Turbine Volute Surface Temperature Models for 3D CFD Vehicle Thermal Management Simulations: Part 3: Exhaust Radial Turbine Volute Systems

2014-04-01
2014-01-0648
Modern exhaust systems contain not only a piping network to transport hot gas from the engine to the atmosphere, but also functional components such as the catalytic converter and turbocharger. The turbocharger is common place in the automotive industry due to their capability to increase the specific power output of reciprocating engines. As the exhaust system is a main heat source for the under body of the vehicle and the turbocharger is located within the engine bay, it is imperative that accurate surface temperatures are achieved. A study by K. Haehndel [1] implemented a 1D fluid stream as a replacement to solving 3D fluid dynamics of the internal exhaust flow. To incorporate the 3D effects of internal fluid flow, augmented Nusselt correlations were used to produce heat transfer coefficients. It was found that the developed correlations for the exhaust system did not adequately represent the heat transfer of the turbocharger.
Journal Article

Maneuver-Based Analysis of Starting-Systems and Starting-Strategies for the Internal Combustion Engine in Full Hybrid Electric Vehicles

2014-10-13
2014-01-2901
The requirement of the start of the internal combustion engine (ICE) not only at vehicle standstill is new for full hybrid electric vehicles in comparison to conventional vehicles. However, the customer will not accept any deterioration with respect to dynamics and comfort. ICE-starting-systems and -strategies have to be designed to meet those demands. Within this research, a method was developed which allows a reproducible maneuver-based analysis of ICE-starts. In the first step, a maneuver catalogue including a customer-oriented maneuver program with appropriate analysis criteria was defined. Afterwards, the maneuvers were implemented and verified in a special test bench environment. Based on the method, two sample hybrid vehicles were benchmarked according to the maneuver catalogue. The benchmarking results demonstrate important dependencies between the criteria-based assessment of ICE-starts and the embedded ICE-starting-system and -strategy.
Technical Paper

A Generic Testbody for Low-Frequency Aeroacoustic Buffeting

2020-09-30
2020-01-1515
Raising demands towards lightweight design paired with a loss of originally predominant engine noise pose significant challenges for NVH engineers in the automotive industry. From an aeroacoustic point of view, low frequency buffeting ranks among the most frequently encountered issues. The phenomenon typically arises due to structural transmission of aerodynamic wall pressure fluctuations and/or, as indicated in this work, through rear vent excitation. A possible workflow to simulate structure-excited buffeting contains a strongly coupled vibro-acoustic model for structure and interior cavity excited by a spatial pressure distribution obtained from a CFD simulation. In the case of rear vent buffeting no validated workflow has been published yet. While approaches have been made to simulate the problem for a real-car geometry such attempts suffer from tremendous computation costs, meshing effort and lack of flexibility.
Technical Paper

Inverse Characterization of Vibro-Acoustic Subsystems for Impedance-Based Substructuring Approaches

2020-09-30
2020-01-1582
Substructuring approaches are helpful methods to solve and understand vibro-acoustic problems involving systems as complex as a vehicle. In that case, the whole system is split into smaller, simpler to solve, subsystems. Substructuring approaches allow mixing different modeling “solvers” (closed form solutions, numerical simulations or experiments). This permits to reach higher frequencies or to solve bigger systems. Finally, one of the most interesting features of substructuring approaches is the possibility to combine numerical and experimental descriptions of subsystems. The latter point is particularly interesting when dealing with subdomains that remain difficult to model with numerical tools (assembly, trim, sandwich panels, porous materials, etc.). The Patch Transfer Functions (PTF) method is one of these substructuring approaches. It condenses information (impedance matrix) of subsystems on their coupling surfaces.
Journal Article

Further Investigations on the Flow Around a Rotating, Isolated Wheel with Detailed Tread Pattern

2015-04-14
2015-01-1554
Efforts in aerodynamic optimization of road vehicles have been steadily increasing in recent years, mainly focusing on the reduction of aerodynamic drag. Of a car's total drag, wheels and wheel houses account for approx. 25 percent. Consequently, the flow around automotive wheels has lately been investigated intensively. Previously, the authors studied a treaded, deformable, isolated full-scale tire rotating in contact with the ground in the wind tunnel and using the Lattice-Boltzmann solver Exa PowerFLOW. It was shown that applying a common numerical setup, with velocity boundary condition prescribed on the tread, significant errors were introduced in the simulation. The contact patch separation was exaggerated and the flow field from wind tunnel measurements could not be reproduced. This investigation carries on the work by examining sensitivities and new approaches in the setup.
Journal Article

Health Ready Components-Unlocking the Potential of IVHM

2016-04-05
2016-01-0075
Health Ready Components are essential to unlocking the potential of Integrated Vehicle Health Management (IVHM) as it relates to real-time diagnosis and prognosis in order to achieve lower maintenance costs, greater asset availability, reliability and safety. IVHM results in reduced maintenance costs by providing more accurate fault isolation and repair guidance. IVHM results in greater asset availability, reliability and safety by recommending preventative maintenance and by identifying anomalous behavior indicative of degraded functionality prior to detection of the fault by other detection mechanisms. The cost, complexity and effectiveness of the IVHM system design, deployment and support depend, to a great extent, on the degree to which components and subsystems provide the run-time data needed by IVHM and the design time semantic data to allow IVHM to interpret those messages.
Journal Article

Computational Fluid Dynamics Calculations of Turbocharger's Bearing Losses

2010-05-05
2010-01-1537
Fuel consumption in internal combustion engines and their associated CO2 emissions have become one of the major issues facing car manufacturers everyday for various reasons: the Kyoto protocol, the upcoming European regulation concerning CO2 emissions requiring emissions of less than 130g CO2/km before 2012, and customer demand. One of the most efficient solutions to reduce fuel consumption is to downsize the engine and increase its specific power and torque by using turbochargers. The engine and the turbocharger have to be chosen carefully and be finely tuned. It is essential to understand and characterise the turbocharger's behaviour precisely and on its whole operating range, especially at low engine speeds. The characteristics at low speed are not provided by manufacturers of turbochargers because compressor maps cannot be achieve on usual test bench.
Journal Article

A Balanced Approach for Securing the OBD-II Port

2017-03-28
2017-01-1662
The On-Board Diagnostics II (OBD-II) port began as a means of extracting diagnostic information and supporting the right to repair. Self-driving vehicles and cellular dongles plugged into the OBD-II port were not anticipated. Researchers have shown that the cellular modem on an OBD-II dongle may be hacked, allowing the attacker to tamper with the vehicle brakes. ADAS, self-driving features and other vehicle functions may be vulnerable as well. The industry must balance the interests of multiple stakeholders including Original Equipment Manufacturers (OEMs) who are required to provide OBD function, repair shops which have a legitimate need to access the OBD functions, dongle providers and drivers. OEMs need the ability to protect drivers and manage liability by limiting how a device or software application may modify the operation of a vehicle.
Technical Paper

Efficient Modeling and Simulation of the Transverse Isotropic Stiffness and Damping Properties of Laminate Structures Using Finite Element Method

2020-09-30
2020-01-1573
The Noise Vibration and Harshness (NVH) characteristics and requirements of vehicles are changing as the automotive manufacturers turn their focus from developing and producing cars propelled by internal combustion engines (ICE) to electrified vehicles. This new strategic orientation enables them to offer products that are more efficient and environmentally friendly. Although electric powertrains have many advantages compared to their established predecessors they also bring new challenges that increase the difficulty of matching the high quality requirements of premium car producers especially regarding NVH. Electric motors are one of the most important sources of vibrations in electric vehicles.
Journal Article

Influence of Pre Turbo Catalyst Design on Diesel Engine Performance, Emissions and Fuel Economy

2008-04-14
2008-01-0071
This paper gives a thorough review of the HC/CO emissions challenge and discusses the effects of different diesel oxidation catalyst designs in a pre turbine and post turbine position on steady state and transient turbo charger performance as well as on HC and CO tailpipe emissions, fuel economy and performance of modern Diesel engines. Results from engine dynamometer testing are presented. Both classical diffusive and advanced premixed Diesel combustion modes are investigated to understand the various effects of possible future engine calibration strategies.
Journal Article

Mechanical Property Evaluation of Permanent-Mould Cast AM-SC1™ Mg-Alloy

2008-04-14
2008-01-0375
AM-SC1™ is a high temperature Mg alloy that was originally developed as a sand casting alloy for automotive powertrain applications. The alloy has been selected as the engine block material for both the AVL Genios LE and the USCAR lightweight magnesium engine projects. The present work assesses the potential of this alloy for permanent-mould die cast applications. Thermo-physical and mechanical properties of AM-SC1 were determined for material derived from a permanent-mould die casting process. The mechanical properties determined included: tensile, creep, bolt load retention/relaxation and both low and high cycle fatigue. To better assess the creep performance, a comparative analysis of the normalized creep properties was carried out using the Mukherjee-Dorn parameter, which confirmed the high viscoplastic performance of AM-SC1 compared with common creep resistant high pressure die cast (HPDC) Mg-alloys.
Journal Article

Development of a Lube Filter with Controlled Additive Release for Modern Heavy Duty Diesel Engines Utilizing EGR

2008-10-07
2008-01-2644
As on-highway heavy-duty diesel engine designs have evolved to meet tighter emission regulations, the crankcase environment for heavy-duty engine lubricants has become more challenging. The introduction of Exhaust Gas Recirculation (EGR) has allowed for significant reductions of exhaust emissions, but has led to increased oxidation and acid build-up in the lubricant. Engine lubricant quality is important to help ensure engine durability, engine performance, and reduce maintenance downtime. Increased acidity and oxidation accelerate the rate at which the lubricant quality is degraded and hence shorten its' useful life. This paper explores the use of a lube filter with a controlled additive release to maintain lubricant quality.
X