Refine Your Search

Topic

Author

Search Results

Technical Paper

Improving the Clutch Design Robustness by Virtual Validation to Predict Clutch Energy Dissipation and Temperature in Clutch Housing

2021-09-22
2021-26-0329
During the vehicle launch (i.e. moving the vehicle from “0” speed), the clutch would be slowly engaged by the Driver or Transmission Control Unit (in Automatic Transmission/Automatic Manual Transmission vehicle) for smooth torque transfer between engine and transmission. The clutch is designed to transfer max engine torque with min heat generation. During the clutch engagement, the difference in flywheel and gearbox input shaft speed is called the clutch slipping phase which then leads to a huge amount of energy being dissipated in terms heat due to friction. As a result, clutch surface temperature increases consistently, when the surface temperature crosses the threshold limit, the clutch wears out quickly or burns spontaneously. Hence it is crucial to predict the energy dissipation and temperature variation in various components of clutch assembly through virtual simulation.
Technical Paper

Simulation Based Approach to Improve the Engine Oil Warmup Behavior Using Exhaust Gas During NEDC Cycle

2021-09-22
2021-26-0422
During the cold start conditions engine must overcome higher friction loss, at the cost of fuel penalty till the optimum temperatures are reached in coolant and lubrication circuits. The lower thermal capacity of the lubrication oil (with respect to the coolant) inverses the relation of viscosity with temperature, improves engine thermal efficiency benefit. Engine oil takes full NEDC test cycle duration to reach 90°C. This leads to higher friction loss throughout the test cycle, contributing a significant increase in fuel consumption. Increasing oil temperature reduces viscosity, thereby reducing the engine friction. This helps to identify the focus for thermal management in the direction of speeding up the temperature rise during a cold engine starting. This work aims at the study and experiment of an exhaust recovery mechanism to improve the NEDC fuel economy.
Technical Paper

A Case Study of Compressor Surge Related Noise on Turbocharged 2.0-L Gasoline Engine

2021-09-22
2021-26-0282
Till recently supercharging was the most accepted technique for boost solution in gasoline engines. Recent advents in turbochargers introduced turbocharging technology into gasoline engines. Turbocharging of gasoline engines has helped in powertrains with higher power density and less overall weight. Along with the advantages in performance, new challenges arise, both in terms of thermal management as well as overall acoustic performance of powertrains. The study focuses mainly on NVH aspects of turbocharging of gasoline engines. Compressor surge is a most common phenomenon in turbochargers. As the operating point on the compressor map moves closer to the surge line, the compressor starts to generate noise. The amplitude and frequency of the noise depends on the proximity of the operating point to the surge line. The severity of noise can be reduced by selecting a turbocharger with enough compressor surge margin.
Technical Paper

Development of a Modern Diesel Engine with Ultra-Low Bore Distortion to Reduce Friction, Blowby, Oil Consumption and DPF Ash Loading

2020-09-25
2020-28-0344
The stringent emission regulations coupled with tighter CO2 targets demand extreme optimization of the diesel engines. In this context, it is important to minimize the cylinder bore distortions in cold and hot conditions. The cold bore distortion is primarily due to the assembly forces applied by the cylinder head bolts whereas the hot distortion is a resultant of local metal temperatures and structural rigidity. The present work describes the extreme optimization techniques used to reduce the bore distortion of a modern high power-density (60 kW / lit) diesel engine, Moreover, the benefits of reducing the bore distortion are quantified in terms of cylinder system friction, blowby rate, oil consumption (OC) and ash loading rate of the diesel particulate filter (DPF). An optimized torque plate honing is used to reduce the bore distortion in cold conditions.
Technical Paper

Experiences in Cold Start Optimization of a Multi-Purpose Vehicle Equipped with 2.2L Common Rail Diesel Engine

2011-04-12
2011-01-0124
High speed diesel engines are difficult to start in cold conditions (at subzero temperature) because the cylinder head and cylinder block absorbs heat of compression and thus preventing ignition due to the high surface to volume ratio. Also the coolant and the engine oil become viscous at subzero temperature and make the condition unfavorable for starting. Combustion optimization along with the help of a heating aid can make these engines to start quickly without any engine misbehavior. Cold startability is the ability of an engine to start within a specified time and continue to run without any malfunctioning. Combustion instability will lead to the misfiring of the engine unless it is calibrated properly. The European countries are subjected to a minimum temperature of -20°C to -25°C. So the intention of this work is to optimize the cold startability of Mahindra's Multi-Purpose Vehicle (MPV) up to -25°C which is to be sold in European countries.
Technical Paper

Turbocharging a Small Two Cylinder DI Diesel Engine - Experiences in Improving the Power, Low End Torque and Specific Fuel Consumption

2011-09-11
2011-24-0133
Turbocharged common rail direct injection engines offer multiple benefits compared to their naturally aspirated counterparts by allowing for a significant increase in the power and torque output, while simultaneously improving the specific fuel consumption and smoke. They also make it possible for the engine to operate at a leaner air/fuel mixture ratio, thereby reducing particulate matter emission and permitting higher EGR flow rates. In the present work, a two cylinder, naturally aspirated common rail injected engine for use on a load carrier platform has been fitted with a turbocharger for improving the power and torque output, so that the engine can be used in a vehicle with a higher kerb weight. The basic architecture and hardware remain unchanged between the naturally aspirated and turbocharged versions. A fixed geometry, waste gated turbocharger with intercooling is used.
Technical Paper

Hybrid Oil Sump for CI Engine

2011-09-11
2011-24-0135
Recently fuel economy and stringent emission norms are the ever growing concern in automotive global scenario. So, automotive engineers are constantly seeking new cost effective methodologies and techniques to achieve considerable weight reduction and improved performance. Nowadays Automotive OEMs are using Aluminum Oil sump (which is a structured part of an engine and supports considerable amount of transmission housing weight) for better emission, reducing the engine height, engine weight and NVH levels. Our present work reveals the concept of ‘Hybrid oil sump’ which made by sheet metal and aluminum in such a way that weight and cost reduced by 20% and 30 % respectively, without compromising NVH and strength properties. Exactly it deals the iteration part of design to arrive the optimum model, various structural modifications since it carries considerable amount of weight of transmission.
Technical Paper

A Unique Methodology to Evaluate the Metallic Noise Concern of a Dual-Mass Flywheel in Real-World Usage Conditions

2021-10-01
2021-28-0249
Dual mass flywheel (DMF) is an excellent solution to improve the noise, vibration, and harshness (NVH) characteristic of any vehicle by isolating the driveline from the engine torsional vibrations. For the same reason, DMF’s are widely used in high power-density diesel and gasoline engines. However, the real-world usage conditions pose a lot of challenges to the robustness of the DMF. In the present work, by capturing the Real-World Usage Profile (RWUP) conditions, a new methodology is developed to evaluate the robustness of a DMF fitted in a Sports utility vehicle (SUV). Ventilation holes are provided on clutch housing to improve convective heat transfer. Improvement in convective heat transfer will increase the life and will reduce clutch burning concerns. Cities like Mumbai, Chennai, Bangalore, roads will have clogged waters during rainy season. When the vehicle was driven in such roads, water enters inside the clutch housing through ventilation holes.
Technical Paper

Chain Load Optimization through Fuel Pump Lobe Phasing and CAE Simulations for a BS6 Compliant Diesel Engine

2021-10-01
2021-28-0163
The introduction of CAFE (Corporate Average Fuel Economy) norms has put a lot of importance on improving the fuel economy of passenger car vehicles. One of the areas to improve the fuel economy is by reducing engine friction. Camshaft drive torque reduction is one such area that helps in engine friction reduction. This paper explains the camshaft drive torque optimization work done on a passenger car Diesel engine with DOHC (double overhead camshaft). The exhaust camshaft of the engine drives the high-pressure Fuel Injection Pump (FIP) in addition to valve actuation. Camshaft drive torque is reduced by reducing the chain load. This is done through optimum phasing of the FIP lobe that drives the fuel injection pump and the cam lobe actuating the exhaust valves. Additional boundary condition for the phasing is ensuring that the FIP lobe is in the fall region of its profile while the piston is at TDC. This helps in avoiding rail pressure fluctuation.
Technical Paper

Integrated Exhaust Manifold Design & Optimization of it through HCF and LCF Simulations for a BS6 Compliant Diesel Engine

2021-10-01
2021-28-0168
This paper discusses design and optimization process for the integration of exhaust manifold with turbocharger for a 3 cylinder diesel engine, simulation activities (CAE and CFD), and validation of manifold while upgrading to meet current BS6 emissions. Exhaust after-treatment system needs to be upgraded from a simple DOC (Diesel Oxidation Catalyst) to a complex DOC+sDPF (Selective catalytic reduction coated on Diesel Particulate Filter) to meet the BS6 emission norms for this engine. To avoid thermal losses and achieve a faster light-off temperature in the catalyst, the exhaust after-treatment (EATS) system needs to be placed close to the engine - exactly at the outlet of the turbocharger. This has given to challenges in packaging the EATS. The turbocharger in case of BS4 is placed near the 2nd cylinder of the engine, but this position will not allow placing the BS6 EATS.
Technical Paper

Random Vibration Fatigue Evaluation of Plastic Components in Automotive Engines

2022-03-29
2022-01-0765
Light weighting in modern automotive powertrains call for use of plastics (PP, PA66GF35) for cam covers, intake manifolds and style covers, and noise encapsulation covers. Conventionally, in early stage of design these components are evaluated for static assembly loads & gasket compression loads at component level. However, engine dynamic excitations which are random in nature make it challenging to evaluate these components for required fatigue life. In this paper, robust methodology to evaluate the fatigue life of engine style cover assembly for random vibration excitations is presented. The investigation is carried out in a high power-density 4-cylinder in-line diesel engine. The engine style cover (with Polyurethane foam) is mounted on cam cover and the intake manifold using steel studs and rubber isolators to suppress the radiated noise.
Technical Paper

Design Analysis and Development of Aluminium Cylinder Block with Slip-Fit Cylinder Liners for High Performance New Generation Passenger Car Diesel Engine

2023-04-11
2023-01-0442
The global automotive industry is growing rapidly in recent years and the market competition has increased drastically. There is a high demand for passenger car segment vehicles with high torque delivery and fuel economy for a pleasant drivability experience. Also, to meet the more stringent emission requirements, automakers are trying very hard to reduce the overall vehicle gross weight. In lowering both fuel consumption and CO2 generation, serious efforts have been made to reduce the overall engine weight. An engine cylinder block is generally considered to be the heaviest part within a complete engine and block alone accounts for 3-4% of the total weight of the average vehicle, thus playing a key role in weight reduction consideration. Aluminum casting alloys as a substitute for the traditional cast iron can mean a reduction in engine block weight between 40 and 55% [9], even if the lower strength of aluminum compared to grey cast iron is considered.
Technical Paper

Comparative Studies of Different VGT Designs on Performance and Smoke of CRDe Engine

2018-07-09
2018-28-0074
Diesel engines have occupied a significant position in passenger car applications in the present automotive sector. Turbochargers find a very prominent role in diesel engines of all applications in order to achieve desired power and better fuel economy. Gaining higher torque at lower engine speeds with low smoke levels is a very tough task with fixed geometry turbochargers due to availability of lower air mass resulting in higher smoke emissions. Variable geometry turbochargers are capable of providing better torque at lower speeds and reduced smoke emissions on Common Rail Diesel engines. The Variable Geometry Turbocharger types used in this study are straight profile nozzle vanes (sample A) and curved profile nozzle vanes (sample B). The curved profile vanes as seen in sample B results in reduced variation of circumferential pressure distortions.
Technical Paper

Development of Low Cost FEAD System with Stretch Fit Belt

2018-07-09
2018-28-0064
In Current scenario all Vehicle Manufacturer are looking towards cost effectiveness in their product development without compromising product quality and performance. With this reference, development of low cost FEAD (Front End Accessory Drive) system with stretch fit belt & idlers for multiple accessories has emerged as one of the alternative smart engineering solution against the FEAD with auto tensioner. The beauty of this low cost FEAD system is not only the cost saving but also the long lasting performance without affecting component life. In the current work, development of a low cost FEAD for 3 cylinder 1.5 litre diesel engine has been presented. It was one of the challenges to introduce stretch fit belt for 3 cylinder engine considering the high torsional vibration. The performance of this FEAD system was evaluated in terms of accessories pulley slip and belt flapping. The component durability was assessed both at engine as well as at vehicle level.
Technical Paper

Experimental Study of Friction Reduction by Reducing Piston Ring Pre-Load

2018-07-09
2018-28-0101
The prime objective of this study is to check the friction reduction by reducing the tangential load of the piston ring. To examine this experimental study has been carried out under motored engine condition from 500 to 4000 engine speed at the step of 500 rpm at different oil temperatures ranging from 40 °C to 120 °C. 15 W40 oil was used for this study. Standard Strip down approach was followed in accessing the Friction. The whole friction measurement was split in crank train and piston group friction and was measured with base and modified piston ring pack. The modified piston ring pack was having 24% less ring tension as compared to base ring pack. The study was carried out using block, crankshaft & Piston of 100 hp, 1.5 litre, 3 cylinder engine with 92 mm stroke and 83 mm bore. In each test ring pack was tested as a part of complete piston assembly.
Technical Paper

High Performance EGR Cooler Selection and its Fouling Behavior for a HSDI Diesel Engine

2015-01-14
2015-26-0087
Selection of EGR system is very complex for a particular engine application. The performance of the EGR system depends highly on the Cooler Heat Transfer Efficiency. Cooler effectiveness drops over a period of operation due to soot deposition, HC condensation, and fuel quality. This phenomenon is called as Cooler Fouling. Fouling cannot be avoided completely but the level of performance drop over time has to be studied and minimized. The minimum pressure drop and the highest efficiency in fouled condition is the target for selection of a cooler. In this study, various parameter combinations like tube shape and profile, tube length, number of tubes, tube diameter, and pitch of corrugations, which influence the cooler performance were tested. A better understanding of each of its effect on cooler effectiveness and fouling behavior was obtained. The tube shape was changed from rectangular to circular, also from smooth surface to corrugate.
Technical Paper

Computational and Experimental Investigations to Improve Performance, Emissions and Fuel Efficiency of a Single Cylinder Diesel Engine

2015-01-14
2015-26-0099
From International Energy Statistics (IES) survey, China, US and India are top three countries in emitting CO2 emissions. Further, worldwide national governments are focused to control CO2 emissions at source by stringent regulatory limits. OEMs and Research laboratories are working on several technology options such as advanced fuel injection system, optimizing in cylinder combustion system, thermal management and reduced engine friction to meet this legal requirements. In this paper, research work focused on improving combustion system through selection optimum bowl geometry and increasing volumetric efficiency through valve timings, profile and intake system using both 1D and 3D-CFD numerical approach. The main objective of this approach to utilize fossil fuel to its maximum potential in a single cylinder Naturally Aspirated (NA) water cooled engine with CRDI.
Technical Paper

An Extensive Optimization Methodology to Validate the Exhaust After-Treatment System of a BS VI Compliant Modern Diesel Engine

2020-09-25
2020-28-0483
The Indian automotive industry has migrated from BS IV (Bharat stage IV) to BS VI (Bharat Stage VI) emission norms from 1st April 2020. This two-step migration of the emission regulations from BS IV to BS VI demands significant engineering efforts to design and integrate highly complex exhaust after-treatment system (EATS). In the present work, the methodology used to evaluate the EATS of a high power-density 1.5-liter diesel engine is discussed in detail. The EATS assembly of the engine consists of a diesel oxidation catalyst (DOC), a diesel particulate filter with selective catalytic reduction coating (sDPF), urea dosing module and urea mixer. Typically, all these components that are needed for emission control are integrated into a single canning of shell thickness ~1.5mm. Moreover, the complete EATS is directly mounted onto the engine with suitable mounting brackets on the cylinder block and cylinder head.
Journal Article

Thermal Analysis of Clutch Assembly Using Co-Simulation Approach

2020-08-18
2020-28-0024
Automotive clutches are rotary components which transmits the torque from the engine to the transmission. During the engagement, due to the difference in speed of the shafts the friction lining initially slips until it makes a complete engagement. Enormous amount of heat is generated due to the slippage of the friction lining, leading to poor shift quality and clutch failure. Depending on the road & traffic conditions, and frequency of engagement and disengagement of the clutch, it generates transient heating and cooling cycles. Hill fade test with maximum GVW conditions being the worst case scenario for the clutch. A test was conducted to understand the performance of the clutch, in which clutch burning was observed. The clutch lining got blackened and burning smell was perceived. The friction coefficient drops sharply to a point until it cannot transmit the torque required to encounter the slope. This further worsen clutch slippage and lead to more severe temperature rise.
Technical Paper

Investigation of Solenoid-Controlled Piston Cooling Jet Benefits for a 1.5l, 3 Cylinder Tcic Diesel Engine

2023-04-11
2023-01-0230
The fuel economy of the internal combustion engine becomes progressively critical, especially with the stringent standards set by the government. To meet the government norms such as CAFE (Corporate Fuel Average Economy), different technologies are being explored and implemented in internal combustion engines. Several technologies such as variable oil pump, map controlled PCJ (Piston Cooling Jet), variable or switchable water pump & ball bearing turbocharger etc. This study investigates the effectiveness of implementing map-controlled PCJ implemented for a 1.5-litre 3-cylinder diesel engine. PCJ’s are major consumers of oil flow and map-controlled PCJ is used by many OEM’s e.g., Ford EcoSport to reduce the oil pump flow. In map-controlled PCJ, the oil to the PCJ is controlled using a solenoid valve. The solenoid valve can be completely variable or ON/OFF type. In our application, the ON/OFF type solenoid value is used to regulate the oil flow to PCJ.
X