Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Numerical and Experimental Assessment of a Solenoid Common-Rail Injector Operation with Advanced Injection Strategies

2016-04-05
2016-01-0563
The selection and tuning of the Fuel Injection System (FIS) are among the most critical tasks for the automotive diesel engine design engineers. In fact, the injection strongly affects the combustion phenomena through which controlling a wide range of related issues such as pollutant emissions, combustion noise and fuel efficiency becomes feasible. In the scope of the engine design optimization, the simulation is an efficient tool in order to both predict the key performance parameters of the FIS, and to reduce the amount of experiments needed to reach the final product configuration. In this work a complete characterization of a solenoid ballistic injector for a Light-Duty Common Rail system was therefore implemented in a commercially available one-dimensional computational software called GT-SUITE. The main phenomena governing the injector operation were simulated by means of three sub-models (electro-magnetic, hydraulic and mechanical).
Technical Paper

1-D Modeling and Room Temperature Experimental Measurements of the Exhaust System Backpressure: Limits and Advantages in the Prediction of Backpressure

2008-04-14
2008-01-0676
It is well known that backpressure is one of the important parameters to be minimised during the exhaust system development. Unfortunately, during the first phases of an engineering process of a new engine, engine prototypes are not available yet. Due to this the exhaust system backpressure is generally evaluated using simulation software, and/or measuring the backpressure by a flow rig test at room temperature. Goal of this paper is to compare exhaust backpressure results obtained respectively: i) at the room temperature flow rig; ii) at the engine dyno bench; iii) by simulation with one of the most common 1D fluidodynamics simulation tool (Gt-Power). A correlation of the three different techniques is presented.
Technical Paper

Domain Control Units - the Solution for Future E/E Architectures?

2010-04-12
2010-01-0686
In order to master the increasing complexity of electrical/electronic (E/E) systems in vehicles, E/E architecture design has become an established discipline. The task of the E/E architecture design is to come up with solutions to challenging and often contradictory requirements such as reduced cost and increased flexibility / scalability. One way to optimize the E/E architecture in terms of cost (electronics & wiring harness) is to integrate functions. This can be done by either combining functions from multiple ECUs into a single ECU or by introducing Domain Control Units. Domain Control Units provide the main software functionality for a vehicle domain, while relegating the basic functions of actuator control to connected intelligent actuators. Depending on the different market segments (low price, volume and premium) and the different vehicle domains, the actual usage of Domain Control Units can be quite different and sometimes questionable.
Technical Paper

A Proposal of an Oil Pan Optimization Methodology

2010-04-12
2010-01-0417
In the powertrain technology, designers must be careful on oil pan design in order to obtain the best noise, vibration and harshness (NVH) performance. This is a great issue for the automotive design because they affect the passengers' comfort. In order to reduce vibration and radiated noise in powertrain assembly, oil pan is one of the most critical components. The high stiffness of the oil pan permits to move up the natural modes of the component and, as a consequence, reduce the sound emission of the component itself. In addition, the optimized shape of the component allows the increase of natural frequency values of the engine assembly. The aim of this study is the development of a methodology to increase the oil pan stiffness starting from a sketch of the component and adding material where it is needed. The methodology is tested on a series of different models: they have the same geometry but different materials.
Technical Paper

Efficient Testing and Cost Awareness: Low-Cost versus HIL-System

2012-04-16
2012-01-0933
Developments for innovative systems in engines, hybrid and electrical vehicles are strongly affected by a high pressure on costs, short development cycles and high quality requirements. Therefore within the business unit Powertrain Systems of Bosch Engineering GmbH (BEG) test environments for SW functions in engine control units (ECU) are selected according to cost and efficiency aspects as well as availability. Prototype vehicles are very expensive and cannot always be provided in time by vehicle manufacturers. Closed-loop test systems like hardware-in-the-loop systems (HIL) are alternatives to perform system tests of ECUs in a vehicle simulation. We propose to consider the usage of low-cost solutions with reduced costs in many cases. At the same time due to these saving effects the number of test systems in an organization can be increased significantly. This enhances the availability of testing equipment for engineers.
Technical Paper

Effective Vehicle Sideslip Angle Estimation using DVS Technology

2014-04-01
2014-01-0084
The vehicle sideslip angle is one of the most important variables for evaluating vehicle dynamics. The potential value of such a variable for obtaining significant improvements over current stability control systems is widely recognized. However, its direct measurement requires the use of complex and expensive devices which cannot be used in production cars. Large research efforts has been devoted to the problem of estimating the sideslip angle from other variables currently measured by standard Electronic Stability Control (ESC) sensors. However, at the best of author's knowledge, until now no application to production cars is known. In this paper, a new sideslip angle estimation technology is presented.
Technical Paper

Measurements of Time-Resolved Mass Injection Rates for a Multi-Hole and an Outward Opening Piezo GDI Injector

2015-04-14
2015-01-0929
Time-resolved mass injection rates of an outward opening piezo-actuated and a solenoid actuated multi-hole GDI injector were measured to investigate (1) the influence of both hardware and software settings and (2) the influence on the injection rates from a wide range of operational parameters and (3) discuss limitations and issues with this measurement technique. The varied operating parameters were fuel pressure, back-pressure, electrical pulse width, single/double injection and injection frequency. The varied hardware/software parameters were injector protrusion, upstream fuel pressure condition and the cut-off frequency of the software's low-pass filter. Signal quality was found to be dependent on both hardware and software settings, especially the cut-off frequency of the low-pass filter. Measurements with high signal quality were not possible for back-pressures lower than 0.5 MPa.
Technical Paper

Pre-Design and Feasibility Analysis of a Magneto-Rheological Braking System for Electric Vehicles

2023-04-11
2023-01-0888
Magneto-Rheological (MR) Fluid started to be used for industrial applications in the last 20 years, and, from that moment on, innovative uses have been evaluated for different applications to exploit its characteristic of changing yield stress as a function of the magnetic field applied. Because of the complexity of the behavior of the MR fluid, it is necessary to perform lots of simulations, combining multi-physical software capable of evaluating all the material’s characteristics. The paper proposes a strategy capable of quickly verifying the feasibility of an innovative MR system, considering a sufficient accuracy of the approximation, able to easily verify the principal criticalities of the innovative applications concerning the MR fluid main electromagnetic and fluid-dynamic capabilities.
X