Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Measurement and Modeling of Perceived Gear Shift Quality for Automatic Transmission Vehicles

2014-05-09
2014-01-9125
This study was conducted to develop and validate a multidimensional measure of shift quality as perceived by drivers during kick-down shift events for automatic transmission vehicles. As part of the first study, a survey was conducted among common drivers to identify primary factors used to describe subjective gear-shifting qualities. A factor analysis on the survey data revealed four semantic subdimensions. These subdimensions include responsiveness, smoothness, unperceivable, and strength. Based on the four descriptive terms, a measure with semantic scales on each subdimension was developed and used in an experiment as the second study. Twelve participants drove and evaluated five vehicles with different gear shifting patterns. Participants were asked to make kick-down events with two different driving intentions (mild vs. sporty) across three different speeds on actual roadway (local streets and highway).
Technical Paper

PEM Fuel Cell Stack Characterization and its Integration in Simulating a Fuel Cell Powertrain

2008-06-23
2008-01-1796
Fuel cell based powertrains are considered as potential candidates for future vehicles. Modeling of vehicle powertrains, using a combination of components and energy storage media, are widely used to predict vehicle performances under different duty cycles. This paper deals with performance analysis of a light-duty vehicle comprised of a PEM fuel cell stack, in combination with different energy storage systems using Powertrain Simulation Analysis Toolkit (PSAT). The performance of the stack was characterized by experimental data on a smaller PEM stack and was used in the simulation. The stack data was collected at controlled loading and thermal parameters. Three energy storage systems are considered in the analysis: nickel metal hydride battery storage, lithium-ion battery storage and ultra capacitor energy storage. The simulation results were analyzed for comparative evaluations and to optimize the performance of the fuel cell powertrain configurations.
Technical Paper

Independent Control of All-Wheel-Drive Torque Distribution

2004-05-04
2004-01-2052
The sophistication of all-wheel-drive technology is approaching the point where the drive torque to each wheel can be independently controlled. This potentially offers vehicle handling enhancements similar to those provided by Dynamic Stability Control, but without the inevitable reduction in vehicle acceleration. Independent control of all-wheel-drive torque distribution would therefore be especially beneficial under acceleration close to the limit of stability. A vehicle model of a typical sports sedan was developed in Simulink, with fully independent control of torque distribution. Box-Behnken experimental design was employed to determine which torque distribution parameters have the greatest impact on the vehicle course and acceleration. A proportional-integral control strategy was implemented, applying yaw rate feedback to vary the front-rear torque distribution, and lateral acceleration feedback to adjust the left-right distribution.
Technical Paper

Evaluating the Effect of Two-Stage Turbocharger Configurations on the Perceived Vehicle Acceleration Using Numerical Simulation

2016-04-05
2016-01-1029
Charge boosting strategy plays an essential role in improving the power density of diesel engines while meeting stringent emissions regulations. In downsized two-stage turbocharged engines, turbocharger matching is critical to achieve desired boost pressure while maintaining sufficiently fast transient response. A numerical simulation model is developed to evaluate the effect of two-stage turbocharger configurations on the perceived vehicle acceleration. The simulation model developed in GT-SUITE consists of engine, drivetrain, and vehicle dynamics sub-models. A model-based turbocharger control logic is developed in MATLAB using an analytical compressor model and a mean-value engine model. The components of the two-stage turbocharging system evaluated in this study include a variable geometry turbine in the high-pressure stage, a compressor bypass valve in the low-pressure stage and an electrically assisted turbocharger in the low-pressure stage.
X