Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Removal of NOx from Diesel Exhausts: The New “Enhanced NH3-SCR” Reaction

2010-04-12
2010-01-1181
Ammonia/urea-SCR is a mature technology, applied worldwide for the control of NOx emissions in combustion exhausts from thermal power plants, cogeneration units, incinerators and stationary diesel engines and more recently also from mobile sources. However a greater DeNOx activity at low temperatures is desired in order to meet more and more restrictive legislations. In this paper we report transient and steady state data collected over commercial Fe-ZSM-5 and V₂O₅-WO₃/TiO₂ catalysts showing high NOx reduction efficiencies in the 200 - 350°C T-range when NO and ammonia react with nitrates, e.g., in the form of an aqueous solution of ammonium nitrate. Under such conditions a new reaction occurs, the so-called "Enhanced SCR" reaction, 2 NH₃ + 2 NO + NH₄NO₃ → 3 N₂ + 5 H₂O.
Technical Paper

Numerical Assessment of an After-Treatment System Equipped with a Burner to Speed-Up the Light-Off during Engine Cold Start

2021-09-05
2021-24-0089
In the next years, the upcoming emission legislations are expected to introduce further restrictions on the admittable level of pollutants from vehicles measured on homologation cycles and real drive tests. In this context, the strict control of pollutant emissions at the cold start will become a crucial point to comply with the new regulation standards. This will necessarily require the implementation of novel strategies to speed-up the light-off of the reactions occurring in the after-treatment system, since the cold start conditions are the most critical one for cumulative emissions. Among the different possible technological solutions, this paper focuses on the evaluation of the potential of a burner system, which is activated before the engine start. The hypothetical burner exploits the lean combustion of an air-gasoline mixture to generate a high temperature gas stream which is directed to the catalyst section promoting a fast heating of the substrate.
Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

2021-09-22
2021-26-0499
Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Journal Article

Friction Estimation at Tire-Ground Contact

2015-04-14
2015-01-1594
The friction estimation at the tire-ground contact is crucial for the active safety of vehicles. Friction estimation is a key problem of vehicle dynamics and the ultimate solution is still unknown. However the proposed approach, based on a simple idea and on a simple hardware, provides an actual solution. The idea is to compare the tire characteristic at a given friction (nominal characteristic) with the actual characteristic that the tire has while running. The comparison among these two characteristics (the nominal one and the actual one) gives the desired friction coefficient. The friction coefficient is expressed in vector form and a number of running parameters are identified. The mentioned comparison is an efficient but complex algorithm based on a mathematical formulation of the tire characteristic. The actual tire characteristic is somehow measured in real time by a relatively simple smart wheel which is able to detect the three forces and the three moments acting at the hub.
Journal Article

Experimental and Numerical Study of Flame Kernel Formation Processes of Propane-Air Mixture in a Pressurized Combustion Vessel

2016-04-05
2016-01-0696
Fuel lean combustion and exhaust gas dilution are known to increase the thermal efficiency and reduce NOx emissions. In this study, experiments are performed to understand the effect of equivalence ratio on flame kernel formation and flame propagation around the spark plug for different low turbulent velocities. A series of experiments are carried out for propane-air mixtures to simulate engine-like conditions. For these experiments, equivalence ratios of 0.7 and 0.9 are tested with 20 percent mass-based exhaust gas recirculation (EGR). Turbulence is generated by a shrouded fan design in the vicinity of J-spark plug. A closed loop feedback control system is used for the fan to generate a consistent flow field. The flow profile is characterized by using Particle Image Velocimetry (PIV) technique. High-speed Schlieren visualization is used for the spark formation and flame propagation.
Journal Article

A Kinetic Modelling Study of Alcohols Operating Regimes in a HCCI Engine

2017-09-04
2017-24-0077
Pursuing a sustainable energy scenario for transportation requires the blending of renewable oxygenated fuels such as alcohols into commercial hydrocarbon fuels. From a chemical kinetic perspective, this requires the accurate description of both hydrocarbon reference fuels (n-heptane, iso-octane, toluene, etc.) and oxygenated fuels chemistry. A recent systematic investigation of linear C2-C5 alcohols ignition in a rapid compression machine at p = 10-30 bar and T = 650- 900 K has extended the scarcity of fundamental data at such conditions, allowing for a revision of the low temperature chemistry for alcohol fuels in the POLIMI mechanism. Heavier alcohols such as n-butanol and n-pentanol present ignition characteristic of interest for application in HCCI engines, due to the presence of the hydroxyl moiety reducing their low temperature reactivity compared to the parent linear alkanes (i.e. higher octane number).
Technical Paper

Numerical Optimization of a SCR System Based on the Injection of Pure Gaseous Ammonia for the NOx Reduction in Light-Duty Diesel Engines

2020-04-14
2020-01-0356
Selective Catalytic Reduction (SCR) systems are nowadays widely applied for the reduction of NOx emitted from Diesel engines. The typical process is based on the injection of aqueous urea in the exhaust gases before the SCR catalyst, which determines the production of the ammonia needed for the catalytic reduction of NOx. However, this technology is affected by two main limitations: a) the evaporation of the urea water solution (UWS) requires a sufficiently high temperature of the exhaust gases and b) the formation of solid deposits during the UWS evaporation is a frequent phenomenon which compromise the correct operation of the system. In this context, to overcome these issues, a technology based on the injection of gaseous ammonia has been recently proposed: in this case, ammonia is stored at the solid state in a cartridge containing a Strontium Chloride salt and it is desorbed by means of electrical heating.
Journal Article

Theoretical/Experimental Study on the Vibrations of a Car Engine

2008-04-14
2008-01-1211
The influence of the inertia properties (mass, centre of gravity location, and inertia tensor) on the dynamic behaviour of the engine-gearbox system of a car is studied in this paper, devoting particular attention to drivability and comfort. The vibration amplitudes and the natural frequencies of the engine-gearbox system have been considered. Additionally, the loads transmitted to the car body have been taken into account. Both the experimental and the theoretical simulations confirmed that the engine-gearbox vibrations in the range 10 - 15 Hz are particularly sensitive to slight variation of the inertia properties. The effects on engine-gearbox vibrations due to half-axles, exhaust system, pipes and inner engine-gearbox fluids have been highlighted.
Journal Article

The NH3 Inhibition Effect in the Standard SCR Reaction over a Commercial Fe-zeolite Catalyst for Diesel Exhaust Aftertreatment: An Experimental and Modeling Study

2011-04-12
2011-01-1319
Transient and steady-state kinetic data are herein presented to analyze the inhibiting effect of ammonia on the NH₃-SCR of NO at low temperatures over a Fe-zeolite commercial catalyst for vehicles. It is shown that in SCR converter models a rate expression accounting for NH₃ inhibition of the Standard SCR reaction is needed in order to predict the specific dynamics observed both in lab-scale and in engine test bench runs upon switching on and off the ammonia feed. Two redox, dual site kinetic models are developed which ascribe such inhibition to the spill-over of ammonia from its adsorption sites, associated with the zeolite, to the redox sites, associated with the Fe promoter. Better agreement both with lab-scale intrinsic kinetic runs and with engine test-bench data, particularly during transients associated with dosing of ammonia to the SCR catalyst, is obtained assuming slow migration of NH₃ between the two sites.
Journal Article

Evaluation of Virtual NOx Sensor Models for Off Road Heavy Duty Diesel Engines

2012-04-16
2012-01-0358
NOx and PM are the critical emissions to meet the legislation limits for diesel engines. Often a value for these emissions is needed online for on-board diagnostics, engine control, exhaust aftertreatment control, model-based controller design or model-in-the-loop simulations. Besides the obvious method of measuring these emissions, a sensible alternative is to estimate them with virtual sensors. A lot of literature can be found presenting different modeling approaches for NOx emissions. Some are very close to the physics and the chemical reactions taking place inside the combustion chamber, others are only given by adapting general functions to measurement data. Hence, generally speaking, there is not a certain method which is seen as the solution for modeling emissions. Finding the best model approach is not straightforward and depends on the model application, the available measurement channels and the available data set for calibration.
Journal Article

xD+1D Catalyst Simulation-A Numerical Study on the Impact of Pore Diffusion

2012-04-16
2012-01-1296
This paper presents a numerical study on the impact of washcoat diffusion on the overall conversion performance of catalytic converters. A comprehensive transient 1D pore diffusion reaction model is embedded in state-of-the-art 1D and 3D catalytic converter models. The pore diffusion model is discussed with its model equations and the applied diffusive transport approaches are summarized. The diffusion reaction model is validated with the help of two available analytical solutions. The impact of basic washcoat characteristics such as pore diameters or thickness on overall conversion performance is investigated by selected 1D+1D calculations. This model is also used to highlight the impact of boundary layer transfer, pore diffusion and reaction on the overall converter conversion performance. The interaction of pore diffusion and flow non-uniformities is demonstrated by 3D+1D CFD simulations.
Journal Article

Development of an ESP Control Logic Based on Force Measurements Provided by Smart Tires

2013-04-08
2013-01-0416
The present paper investigates possible enhancement of ESP performance associated with the use of smart tires. In particular a novel control logic based on a direct feedback on the longitudinal forces developed by the four tires is considered. The control logic was developed using a simulation tool including a 14 dofs vehicle model and a smart tires emulator. Performance of the control strategy was evaluated in a series of handling maneuvers. The same maneuvers were performed on a HiL test bench interfacing the same vehicle model with a production ESP ECU. Results of the two logics were analyzed and compared.
Journal Article

Evaluation of Valve Train Variability in Diesel Engines

2015-09-06
2015-24-2532
The continuously decreasing emission limits lead to a growing importance of exhaust aftertreatment in Diesel engines. Hence, methods for achieving a rapid catalyst light-off after engine cold start and for maintaining the catalyst temperature during low load operation will become more and more necessary. The present work evaluates several valve timing strategies concerning their ability for doing so. For this purpose, simulations as well as experimental investigations were conducted. A special focus of simulation was on pointing out the relevance of exhaust temperature, mass flow and enthalpy for these thermomanagement tasks. An increase of exhaust temperature is beneficial for both catalyst heat-up and maintaining catalyst temperature. In case of the exhaust mass flow, high values are advantageous only in case of a catalyst heat-up process, while maintaining catalyst temperature is supported by a low mass flow.
Journal Article

Comparison of Torque Vectoring Control Strategies for a IWM Vehicle

2014-04-01
2014-01-0860
In recent years, concerns for environmental pollution and oil price stimulated the demand for vehicles based on technologies alternative to traditional IC engines. Nowadays several carmakers include hybrid vehicles among their offer and first full electric vehicles appear on the market. Among the different layout of the electric power-train, four in-wheel motors appear to be one of the most attractive. Besides increasing the inner room, this architecture offers the interesting opportunity of easily and efficiently distribute the driving/braking torque on the four wheels. This characteristic can be exploited to generate a yaw moment (torque vectoring) able to increase lateral stability and to improve the handling of a vehicle. The present paper presents and compares two different torque vectoring control strategies for an electric vehicle with four in-wheel motors. Performances of the control strategies are evaluated by means of numerical simulations of open and closed loop maneuvers.
Journal Article

Analysis of Thermodynamic Characteristics of Diesel Engine Emission Control Strategies Using a Multi-Zone Combustion Model

2012-04-16
2012-01-1340
The paper describes a zero-dimensional crank angle resolved combustion model which was developed for the analysis and prediction of combustion in compression ignition (CI) engines. The model relies on the multi zone combustion model (MZCM) approach of Hiroyasu. The main sub-models were taken from literature and extended with additional features described in this paper. A special procedure described in a previous paper is used to identify the mechanisms of the combustion process on the basis of the measured cylinder pressure trace. Based on the identified mechanisms the present work concentrates on the analysis of the causal effects that predominantly control the combustion process and the formation of NOx and Soot. The focus lies on the changes of the thermodynamic states and the composition of the reaction zones caused by different emission control strategies.
Journal Article

Brake Based Torque Vectoring for Sport Vehicle Performance Improvement

2008-04-14
2008-01-0596
The most common automotive drivelines transmit the engine torque to the driven axle through a differential. Semi-active versions of this device ([4], [5], [6]) have been recently conceived to improve vehicle handling at limit and under particular conditions; these differentials are based on the structural scheme of the passive one but they try to manipulate the vehicle dynamics by controlling the distribution of the driving torque on the wheels of the same axle thus generating a yaw moment. Unfortunately a semi-active differential is not able to perform a complete yaw control since the torque can only be transferred from the faster wheel to the slower one; on the other hand, active differentials ([11], [12], [13]) allow to generate the most appropriate yaw moment controlling both the amount of transferred torque and its direction.
Technical Paper

Integrated Vehicle and Driveline Modeling

2007-04-16
2007-01-1583
In the last years automotive industry has shown a growing interest in exploring the field of vehicle dynamic control, improving handling performances and safety of the vehicle, and actuating devices able to optimize the driving torque distribution to the wheels. These techniques are defined as torque vectoring. The potentiality of these systems relies on the strong coupling between longitudinal and lateral vehicle dynamics established by tires and powertrain. Due to this fact the detailed (and correct) simulation of the dynamic behaviour of the driveline has a strong importance in the development of these control systems, which aim is to optimize the contact forces distribution. The aim of this work is to build an integrated vehicle and powertrain model in order to provide a proper instrument to be used in the development of such systems, able to reproduce the dynamic interaction between vehicle and driveline and its effects on the handling performances.
Technical Paper

Industrialization of Base Calibration Methods for ECU-functions Exemplary for Air Charge Determination

2010-04-12
2010-01-0331
Today's calibration process for ECU functions is often based on a wide variety of proprietary tools and individual expert knowledge of calibration engineers. Automatic calibration with an industrialized tool chain provides high potential to reduce testbed time, calibration time and project costs. Based on an efficient measurement procedure in combination with an offline calibration methodology the capability is validated, e.g. for calibrating the ECU function “Air Charge Determination” for SI engines. In this article the implementation, in a series production project of a major OEM, is shown. The whole workflow - which can also be applied to other calibration tasks - will be described in detail. Presented here will be how General Motors Corporation (GM) is able to speed up the calibration of the ECU functions, whilst maintaining at least the same quality of calibration as before, by the use of this tool chain.
Technical Paper

On the Impact of the Maximum Available Tire-Road Friction Coefficient Awareness in a Brake-Based Torque Vectoring System

2010-04-12
2010-01-0116
Tire-road interaction is one of the main concerns in the design of control strategies for active/semi-active differentials oriented to improve handling performances of a vehicle. In particular, the knowledge of the friction coefficient at the tire-road interface is crucial for achieving the best performance in any working condition. State observers and estimators have been developed at the purpose, based on the measurements traditionally carried out on board vehicle (steer angle, lateral acceleration, yaw rate, wheels speed). However, until today, the problem of tire-road friction coefficient estimation (and especially of its maximum value) has not completely been solved. Thus, active control systems developed so far rely on a driver manual selection of the road adherence condition (anyway characterized by a rough and imprecise quality) or on a conservative tuning of the control logic in order to ensure vehicle safety among different tire-road friction coefficients.
Technical Paper

Tool Based Calibration with the OBDmanager

2010-04-12
2010-01-0249
At the moment the documentation of failure inhibition matrices and the fault path management for different controller types and different vehicle projects are mainly maintained manually in individual Excel tables. This is not only time consuming but also gives a high potential for fault liability. In addition there is also no guarantee that the calibration of these failure inhibition matrices and its fault path really works. Conflicting aims between costs, time and fault liability require a new approach for the calibration, documentation and testing of failure inhibition matrices and the complete Diagnostic System Management (DSM) calibration. The standardization and harmonization of the Diagnostic System Management calibration for different calibration projects and derivates is the first step to reduce time and costs. Creating a master calibration for the conjoint fault paths and labels provides a significant reduction of efforts.
X