Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

ADAS Feature Concepts Development Framework via a Low Cost RC Car

2017-03-28
2017-01-0116
ADAS features development involves multidisciplinary technical fields, as well as extensive variety of different sensors and actuators, therefore the early design process requires much more resources and time to collaborate and implement. This paper will demonstrate an alternative way of developing prototype ADAS concept features by using remote control car with low cost hobby type of controllers, such as Arduino Due and Raspberry Pi. Camera and a one-beam type Lidar are implemented together with Raspberry Pi. OpenCV free open source software is also used for developing lane detection and object recognition. In this paper, we demonstrate that low cost frame work can be used for the high level concept algorithm architecture, development, and potential operation, as well as high level base testing of various features and functionalities. The developed RC vehicle can be used as a prototype of the early design phase as well as a functional safety testing bench.
Technical Paper

A Lane Departure Estimating Algorithm Based on Camera Vision, Inertial Navigation Sensor and GPS Data

2017-03-28
2017-01-0102
In this paper, a sensor fusion approach is introduced to estimate lane departure. The proposed algorithm combines the camera, inertial navigation sensor, and GPS data with the vehicle dynamics to estimate the vehicle path and the lane departure time. The lane path and vehicle path are estimated by using Kalman filters. This algorithm can be used to provide early warning for lane departure in order to increase driving safety. By integrating inertial navigation sensor and GPS data, the inertial sensor biases can be estimated and the vehicle path can be estimated where the GPS data is not available or is poor. Additionally, the algorithm can be used to reduce the latency of information embedded in the controls, so that the vehicle lateral control performance can be significantly improved during lane keeping in Advanced Driver Assistance Systems (ADAS) or autonomous vehicles. Furthermore, it improves lane detection reliability in situations when camera fails to detect lanes.
Technical Paper

Correlations of Non-Vaporizing Spray Penetration for 3000 Bar Diesel Spray Injection

2013-09-08
2013-24-0033
Increasing fuel injection pressure has enabled reduction of diesel emissions while retaining the advantage of the high thermal efficiency of diesel engines. With production diesel injectors operating in the range from 300 to 2400 bar, there is interest in injection pressures of 3000 bar and higher for further emissions reduction and fuel efficiency improvements. Fundamental understanding of diesel spray characteristics including very early injection and non-vaporizing spray penetration is essential to improve model development and facilitate the integration of advanced injection systems with elevated injection pressure into future diesel engines. Studies were conducted in an optically accessible constant volume combustion vessel under non-vaporizing conditions. Two advanced high pressure multi-hole injectors were used with different hole diameters, number of holes, and flow rates, with only one plume of each injector being imaged to enable high frame rate imaging.
X