Refine Your Search

Topic

Author

Search Results

Video

Orbital Drilling Machine for One Way Assembly in Hard Materials

2012-03-23
In Aeronautic industry, when we launch a new industrialization for an aircraft sub assembly we always have the same questions in mind for drilling operations, especially when focusing on lean manufacturing. How can we avoid dismantling and deburring parts after drilling operation? Can a drilling centre perform all the tasks needed to deliver a hole ready to install final fastener? How can we decrease down-time of the drilling centre? Can a drilling centre be integrated in a pulse assembly line? How can we improve environmental efficiency of a drilling centre? It is based on these main drivers that AIRBUS has developed, with SPIE and SOS, a new generation of drilling centre dedicated for hard materials such as titanium, and high thicknesses. The first application was for the assembly of the primary structure of A350 engine pylons. The main solution that was implemented meeting several objectives was the development of orbital drilling technology in hard metal stacks.
Journal Article

Application of Model Based Functional Specification Methods to Environmental Control Systems Engineering

2011-10-18
2011-01-2504
The paper presents an innovative approach for the functional specification of complex and highly integrated aircraft control systems, such as the Environmental Control System (ECS), by applying model based specification methods. Complexity and effectiveness of modern ECS have significantly increased during the last few years along with development of new technologies and innovations in control engineering as well as digital data distribution and processing. Efficient management of cabin air flows on the one hand makes the ECS more energy-saving and on the other hand more complex with regard to its functionality and interaction with other interfaced aircraft systems. Numerous data interfaces to other systems and a high degree of automation are typical for a modern ECS. The aircraft manufacturer specifies the entire ECS functions and its interactions within the aircraft.
Journal Article

A Cockpit Point of View on "Human Factors" for a Changing ATM Environment

2011-10-18
2011-01-2709
The vision of SESAR is to integrate and implement new technologies to improve air traffic management (ATM) performance. Enhanced automation and new separation modes characterize the future concept of operations, where the role of the human operator will remain central by integrating more managing and decision-making functions. The expected changes represent challenges for the human actors in the aircraft and on ground and must be taken into account during the development phase. Integrating the human in the ATM system development starting from the early design phase is a key factor for future acceptability. This paper describes the adaptation of currently applied Cockpit Human Factors processes in order to be able to design the aircraft for the future ATM environment.
Journal Article

Blind Bolts Developments

2011-10-18
2011-01-2755
There is an ever growing demand for blind fastener in the aerospace industry. This demand is driven not only by the advantages of single sided installation, but also by the potential to fully automate their installation process. Blind fasteners can easily be integrated with innovative end-effectors that combine drilling, installation and inspection systems, enabling the reduction of process cycle times and their associated cost savings. Clearly the advantages of single sided installation are a key benefit, but it cannot be forgotten that currently the mechanical performance of these systems is reduced compared with conventional threaded or swaged parallel shank fasteners. There are other important drawbacks existing around them which could penalise significantly the optimised design and performance of the structures. Specific key characteristics that take into account some of these drawbacks have been established by Airbus which will be referenced in this paper.
Technical Paper

Stick Fastener Feed System for Large Variety & Small Quantity

2008-09-16
2008-01-2320
Electroimpact has developed a new Fastener Feed System which provides an automated solution for fasteners previously hand fed via drop tubes. The hardware is simple, compact, and is supplied a fraction of the cost of hoppers or cartridges. It can be used as a primary feed system or it can be used as an auxiliary feed system when combined with feed systems designed for high quantities of fasteners. We have installed this system on the A380 Stage 0 LVER lower panel wing machines and feed 5 diameters, 10 grips each, for a total of 50 different fastener types. This system moves 547 total fasteners per ship set from manual feed to automatic feed, saving considerable build time.
Technical Paper

Future Concept of Operations: The Airbus ADS-B Perspective

2010-09-30
2010-01-1660
This paper describes the Airbus plans to use ADS-B in the future concept of operations in both the European SESAR and the US NEXTGEN concepts of operations. It details the different steps that are currently considered by Airbus roadmap to deploy ADS-B services and functions. In particular, the following points are described: Use of ADS-B OUT in Non Radar Airspace Use of ADS-B IN and the associated Airbus functions to offer a better Air Traffic Situation Awareness (ATSAW) package: the various applications for airborne, in trail climb/descent procedures or enhanced visual acquisition are particularly detailed. Use of ADS-B for the future Spacing function as currently considered in the initial ASAS implementation for SESAR: the three “Remain Behind”, “Merge at Waypoint then Remain behind” and the “Heading then merge behind” applications are explained.
Technical Paper

Vibration Assisted Drilling of Aerospace Materials

2016-09-27
2016-01-2136
Insufficient chip extraction often leads to disruptions of automated drilling processes and will have a negative impact on the surface qualities. One opportunity to avoid chip accumulation is based on a kinematically enforced chip breakage caused by sinusoidal axial oscillations of the drilling tool. Recent investigations have shown that the quality of chip extraction is, amongst others, considerably depending on the chip shape and mass which are defined by the cutting parameters feed, amplitude and frequency. So far only mechanical systems in the form of tool holders have been available on the market, which are restricted to a fixed frequency (oscillation frequency is coupled to the spindle speed). In the present study a spindle with magnetic bearings was used which allows to adjust the oscillation frequency independent of the spindle speed and therefore enables all opportunities to affect the generated chip shapes.
Technical Paper

EMR with High Reliability for Retrofit of E4100 Riveting Gantry Machines

2017-09-19
2017-01-2099
Electroimpact has retrofitted two E4100 riveting gantry machines and two more are in process. These machines use the EMR (Electromagnetic Riveter) riveting process for the installation of slug rivets. We have improved the skin side EMR to provide fast and reliable results: reliability improved by eliminating a weekly shutdown of the machine. In paper 2015-01-2515 we showed the slug rivet injector using a Synchronized Parallel Gripper that provides good results over multiple rivet diameters. This injector is mounted to the skin side EMR so that the rivet injection can be done at any position of the shuttle table. The EMR is a challenging application for the fingers due to shock and vibration. In previous designs, fingers would occasionally be thrown out of the slots. To provide reliable results we redesigned the fingers retainer to capture the finger in a slotted plastic block which slides along the outside diameter of the driver bearing.
Technical Paper

Airbus - EMAs for Flight Controls Actuation System - An Important Step Achieved in 2011

2011-10-18
2011-01-2732
A significant step is achieved on the flight control actuation system toward the more electrical aircraft through the Airbus A380, A400M and the A350 development phase ongoing. The A380/A400M/A350 features a mixed flight control actuation power source distribution, associating electrically powered actuators with conventional FlyByWire hydraulic servocontrols. In the scope of the preparation of the future Airbus Aircraft, this paper presents the perspectives of the use of the EMA technologies for the flight control systems in the more electrical aircraft highlighting the main technical challenges need to treat: jamming susceptibility, “on board” maintenance reduction, Operational reliability increase, power electronics and power management optimization, and regarding the environmental constraints, the predicted performances; the benefits associated to the optimized utilization of on-board power sources.
Technical Paper

EMA Aileron COVADIS Development

2011-10-18
2011-01-2729
In the frame of the COVADIS project (flight control with distributed intelligence and systems integration) supported by the DPAC and where Airbus and Sagem are partners, an electromechanical actuator (EMA) developed and produced by Sagem (SAFRAN group) flew for the first time in January 2011 as an aileron primary flight control of the Airbus A320 flight test Aircraft. With this new type of actuator, in the scope of the preparation of the future Airbus Aircraft, the perspectives of using EMA technologies for the flight control systems is an important potential enabler in the more electrical aircraft. The paper deals with the development phase of this actuator from the definition phase up to the flight tests campaign. It is focused on : COVADIS project context (flight control with distributed intelligence and systems integration), The challenges of the definition phase, Test results presentation (ground and flight).
Technical Paper

IT Security Management of Aircraft in Operation: A Manufacturer's View

2011-10-18
2011-01-2717
Over the last few years, IT systems have quickly found their way onboard aircrafts, driven by the continuous pursuit of improved safety and efficiency in aircraft operation, but also in an attempt to provide the ultimate in-flight experience for passengers. Along with IT systems and communication links came IT security as a new factor in the equation when evaluating and monitoring the operational risk that needs to be managed during the operation of the aircraft. This is mainly due to the fact that security deficiencies can cause services to be unavailable, or even worse, to be exploited by intentional attacks or inadvertent actions. Aircraft manufacturers needed to develop new processes and had to get organized accordingly in order to efficiently and effectively address these new risks.
Technical Paper

On-line Estimation of Longitudinal Flight Parameters

2011-10-18
2011-01-2769
The introduction of Fly-By-Wire (FBW) and the increasing level of automation contribute to improve the safety of civil aircraft significantly. These technological steps permit the development of advanced capabilities for detecting, protecting and optimizing A/C guidance and control. Accordingly, this higher complexity requires extending the availability of aircraft states, some flight parameters becoming key parameters to ensure a good behaviour of the flight control systems. Consequently, the monitoring and consolidation of these signals appear as major issues to achieve the expected autonomy. Two different alternatives occur to get this result. The usual solution consists in introducing many functionally redundant elements (sensors) to enlarge the way the key parameters are measured. This solution corresponds to the classical hardware redundancy, but penalizes the overall system performance in terms of weight, power consumption, space requirements, and extra maintenance needs.
Technical Paper

Orbital Drilling Machine for One Way Assembly in Hard Materials

2011-10-18
2011-01-2745
In Aeronautic industry, when we launch a new industrialization for an aircraft sub assembly we always have the same questions in mind for drilling operations, especially when focusing on lean manufacturing. How can we avoid dismantling and deburring parts after drilling operation? Can a drilling centre perform all the tasks needed to deliver a hole ready to install final fastener? How can we simplify specific jigs used to maintain parts during drilling operations? How can we decrease down-time of the drilling centre? Can a drilling centre be integrated in a pulse assembly line? How can we improve environmental efficiency of a drilling centre? It is based on these main drivers that AIRBUS has developed, with SPIE and SOS, a new generation of drilling centre dedicated for hard materials such as titanium, and high thicknesses. The first application was for the assembly of the primary structure of A350 engine pylons.
Technical Paper

Force Controlled Assembly of a Compliant Rib

2011-10-18
2011-01-2734
Automation in aerospace industry is often in the form of dedicated solutions and focused on processes like drilling, riveting etc. The common industrial robot has due to limitations in positional accuracy and stiffness often been unsuitable for aerospace manufacturing. One major cost driver in aircraft manufacturing is manual assembly and the bespoke tooling needed. Assembly tasks frequently involve setting relations between parts rather than a global need for accuracy. This makes assembly a suitable process for the use of force control. With force control a robot equipped with needed software and hardware, searches for desired force rather than for a position. To test the usefulness of force control for aircraft assembly an experimental case aligning a compliant rib to multiple surfaces was designed and executed. The system used consisted of a standard ABB robot and an open controller and the assembly sequence was made up of several steps in order to achieve final position.
Technical Paper

Fixturing and Tooling for Wing Assembly with Reconfigurable Datum System Pickup

2011-10-18
2011-01-2556
The aerospace manufacturing sector is continuously seeking automation due to increased demand for the next generation single-isle aircraft. In order to reduce weight and fuel consumption aircraft manufacturers have increasingly started to use more composites as part of the structure. The manufacture and assembly of composites poses different constraints and challenges compared to the more traditional aircraft build consisting of metal components. In order to overcome these problems and to achieve the desired production rate existing manufacturing technologies have to be improved. New technologies and build concepts have to be developed in order to achieve the rate and ramp up of production and cost saving. This paper investigates how to achieve the rib hole key characteristic (KC) in a composite wing box assembly process. When the rib hole KC is out of tolerances, possibly, the KC can be achieved by imposing it by means of adjustable tooling and fixturing elements.
Technical Paper

Sensitivity of SAE Total Pressure Intake Distortion Descriptors to Pressure Fluctuations at the Engine-Intake Interface Plane

2011-10-18
2011-01-2544
A methodology to evaluate the sensitivity of total pressure intake distortion descriptors defined by SAE ARP 1420 to individual pressure fluctuations in the Aerodynamic Interface Plane -AIP- has been developed. Individual pressure fluctuations were simulated as a white noise using a random number generator with a Gaussian distribution of known standard deviation. Monte Carlo experiments were performed perturbing different steady total pressure patterns on the AIP with random signals of different RMS values. Instantaneous distortion descriptors were calculated and statistically characterized. General correlations were obtained applying maximum value statistics to relate the maximum expected distortion increment to the RMS of the individual pressure fluctuations, the mean total pressure on the AIP and the number of samples.
Technical Paper

Engine Control, An Aircraft Atypical Computer: How to Set the Standard?

2011-10-18
2011-01-2543
Four years ago Airbus became actively involved in the SAE E36, Electronic Engine Control committee. This paper presents an Airframe Manufacturer view of one current working practices discussion relative to the FADEC electrical hardware change and describes an Airframe Manufacturer views on the committee's effectiveness along with a vision for its future. The SAE E36 committee is a representation of the propulsion control engineering community. The members comes from Airworthiness Authorities and other government and military agencies, airframers, engine manufacturers and control suppliers from North America, South America and Europe (including Russia). An active involvement allows an aircraft manufacturer to participate actively in the process and “to set the standard”. An additional benefit is to be aware of “what's hot”.
Technical Paper

Model-Based Safety Assessment for the Three Stages of Refinement of the System Development Process in ARP4754A

2011-10-18
2011-01-2548
Model Based Safety techniques have been developed for a number of years, though the models have not been customised to help address the safety considerations/ actions at each refinement level. The work performed in the MISSA Project looked at defining the content of “safety models” for each of the refinement levels. A modelling approach has been defined that provides support for the initial functional hazard analysis, then for the systems architectural definition level and finally for the systems implementation level. The Aircraft functional model is used to apportion qualitative and quantitative requirements, the systems architectural level is used to perform a preliminary systems safety analysis to demonstrate that a system architecture can satisfy qualitative and quantitative requirements.
Technical Paper

Applying a Concept for Robot-Human Cooperation to Aerospace Equipping Processes

2011-10-18
2011-01-2655
Significant effort has been applied to the introduction of automation for the structural assembly of aircraft. However, the equipping of the aircraft with internal services such as hydraulics, fuel, bleed-air and electrics and the attachment of movables such as ailerons and flaps remains almost exclusively manual and little research has been directed towards it. The problem is that the process requires lengthy assembly methods and there are many complex tasks which require high levels of dexterity and judgement from human operators. The parts used are prone to tolerance stack-ups, the tolerance for mating parts is extremely tight (sub-millimetre) and access is very poor. All of these make the application of conventional automation almost impossible. A possible solution is flexible metrology assisted collaborative assembly. This aims to optimise the assembly processes by using a robot to position the parts whilst an operator performs the fixing process.
Technical Paper

Development of a High Temperature Power Module Technology with SiC Devices for High Density Power Electronics

2011-10-18
2011-01-2620
This paper presents the development of a high density packaging technology for wide band gap power devices, such as silicon carbide (SiC). These devices are interesting candidates for the next aircraft power electronic converters. Effectively they achieve high switching frequencies thanks to the low losses level. High switching frequencies lead to reduce the passive components size and to an overall weight reduction of power converters. Moreover, SiC devices may enable operation at junction temperatures around 250°C. The cooling requirement is much less stringent than for usual Si devices. This might considerably simplify the cooling system, and reduce the overall weight. To achieve the integration requirements for SiC devices, classical wire bonding interconnection is replaced by a stacked packaging using bump interconnection technologies, called sandwich. These technologies offer two thermal paths to drain heat out and present more power integration possibilities.
X