Refine Your Search

Topic

Author

Search Results

Journal Article

Removal of NOx from Diesel Exhausts: The New “Enhanced NH3-SCR” Reaction

2010-04-12
2010-01-1181
Ammonia/urea-SCR is a mature technology, applied worldwide for the control of NOx emissions in combustion exhausts from thermal power plants, cogeneration units, incinerators and stationary diesel engines and more recently also from mobile sources. However a greater DeNOx activity at low temperatures is desired in order to meet more and more restrictive legislations. In this paper we report transient and steady state data collected over commercial Fe-ZSM-5 and V₂O₅-WO₃/TiO₂ catalysts showing high NOx reduction efficiencies in the 200 - 350°C T-range when NO and ammonia react with nitrates, e.g., in the form of an aqueous solution of ammonium nitrate. Under such conditions a new reaction occurs, the so-called "Enhanced SCR" reaction, 2 NH₃ + 2 NO + NH₄NO₃ → 3 N₂ + 5 H₂O.
Journal Article

A Scale Adaptive Filtering Technique for Turbulence Modeling of Unsteady Flows in IC Engines

2015-04-14
2015-01-0395
Swirling flows are very dominant in applied technical problems, especially in IC engines, and their prediction requires rather sophisticated modeling. An adaptive low-pass filtering procedure for the modeled turbulent length and time scales is derived and applied to Menter' original k - ω SST turbulence model. The modeled length and time scales are compared to what can potentially be resolved by the computational grid and time step. If the modeled scales are larger than the resolvable scales, the resolvable scales will replace the modeled scales in the formulation of the eddy viscosity; therefore, the filtering technique helps the turbulence model to adapt in accordance with the mesh resolution and the scales to capture.
Technical Paper

Numerical Assessment of an After-Treatment System Equipped with a Burner to Speed-Up the Light-Off during Engine Cold Start

2021-09-05
2021-24-0089
In the next years, the upcoming emission legislations are expected to introduce further restrictions on the admittable level of pollutants from vehicles measured on homologation cycles and real drive tests. In this context, the strict control of pollutant emissions at the cold start will become a crucial point to comply with the new regulation standards. This will necessarily require the implementation of novel strategies to speed-up the light-off of the reactions occurring in the after-treatment system, since the cold start conditions are the most critical one for cumulative emissions. Among the different possible technological solutions, this paper focuses on the evaluation of the potential of a burner system, which is activated before the engine start. The hypothetical burner exploits the lean combustion of an air-gasoline mixture to generate a high temperature gas stream which is directed to the catalyst section promoting a fast heating of the substrate.
Technical Paper

Modeling the Kinetic and Thermal Interaction of UWS Droplets Impinging on a Flat Plate at Different Exhaust Gas Conditions

2021-09-05
2021-24-0079
The selective catalytic reduction has seen widespread adoption as the best technology to reduce the NOx emissions from internal combustion engines, particularly for Diesels. This technology uses ammonia as a reducing agent, which is obtained injecting an ammonia carrier into the exhaust gas stream. The dosing of the ammonia carrier, usually AdBlue, is the major concern during the design and engine calibration phases, since the interaction between the injected liquid and the components of the exhaust system can lead to the undesired formation of solid deposits. To avoid this, the thermal and kinematic interaction between the spray and the components of the after treatment system (ATS) must be modeled accurately. In this work, the authors developed a Conjugate Heat Transfer (CHT) framework to model the kinetic and thermal interaction among the spray, the eventual liquid layer and the pipe walls.
Journal Article

Experimental and Numerical Study of Flame Kernel Formation Processes of Propane-Air Mixture in a Pressurized Combustion Vessel

2016-04-05
2016-01-0696
Fuel lean combustion and exhaust gas dilution are known to increase the thermal efficiency and reduce NOx emissions. In this study, experiments are performed to understand the effect of equivalence ratio on flame kernel formation and flame propagation around the spark plug for different low turbulent velocities. A series of experiments are carried out for propane-air mixtures to simulate engine-like conditions. For these experiments, equivalence ratios of 0.7 and 0.9 are tested with 20 percent mass-based exhaust gas recirculation (EGR). Turbulence is generated by a shrouded fan design in the vicinity of J-spark plug. A closed loop feedback control system is used for the fan to generate a consistent flow field. The flow profile is characterized by using Particle Image Velocimetry (PIV) technique. High-speed Schlieren visualization is used for the spark formation and flame propagation.
Journal Article

A Kinetic Modelling Study of Alcohols Operating Regimes in a HCCI Engine

2017-09-04
2017-24-0077
Pursuing a sustainable energy scenario for transportation requires the blending of renewable oxygenated fuels such as alcohols into commercial hydrocarbon fuels. From a chemical kinetic perspective, this requires the accurate description of both hydrocarbon reference fuels (n-heptane, iso-octane, toluene, etc.) and oxygenated fuels chemistry. A recent systematic investigation of linear C2-C5 alcohols ignition in a rapid compression machine at p = 10-30 bar and T = 650- 900 K has extended the scarcity of fundamental data at such conditions, allowing for a revision of the low temperature chemistry for alcohol fuels in the POLIMI mechanism. Heavier alcohols such as n-butanol and n-pentanol present ignition characteristic of interest for application in HCCI engines, due to the presence of the hydroxyl moiety reducing their low temperature reactivity compared to the parent linear alkanes (i.e. higher octane number).
Technical Paper

Numerical Optimization of a SCR System Based on the Injection of Pure Gaseous Ammonia for the NOx Reduction in Light-Duty Diesel Engines

2020-04-14
2020-01-0356
Selective Catalytic Reduction (SCR) systems are nowadays widely applied for the reduction of NOx emitted from Diesel engines. The typical process is based on the injection of aqueous urea in the exhaust gases before the SCR catalyst, which determines the production of the ammonia needed for the catalytic reduction of NOx. However, this technology is affected by two main limitations: a) the evaporation of the urea water solution (UWS) requires a sufficiently high temperature of the exhaust gases and b) the formation of solid deposits during the UWS evaporation is a frequent phenomenon which compromise the correct operation of the system. In this context, to overcome these issues, a technology based on the injection of gaseous ammonia has been recently proposed: in this case, ammonia is stored at the solid state in a cartridge containing a Strontium Chloride salt and it is desorbed by means of electrical heating.
Technical Paper

Validation of a Theoretical Model for the Correction of Heat Transfer Effects in Turbocharger Testing through a Quasi-3D Model

2020-04-14
2020-01-1010
In the last few years, the effect of diabatic test conditions on compressor performance maps has been widely investigated, leading some Authors to propose different correction models. The accuracy of turbocharger performance map constitute the basis for the tuning and validation of a numerical method, usually adopted for the prediction of engine-turbocharger matching. Actually, it is common practice in automotive applications to use simulation codes, which can either require measured compression ratio and efficiency maps as input values or calculate them “on the fly” throughout specific sub-models integrated in the numerical procedures. Therefore, the ability to correct the measured performance maps taking into account internal heat transfer would allow the implementation of commercial simulation codes used for engine-turbocharger matching calculations.
Journal Article

The NH3 Inhibition Effect in the Standard SCR Reaction over a Commercial Fe-zeolite Catalyst for Diesel Exhaust Aftertreatment: An Experimental and Modeling Study

2011-04-12
2011-01-1319
Transient and steady-state kinetic data are herein presented to analyze the inhibiting effect of ammonia on the NH₃-SCR of NO at low temperatures over a Fe-zeolite commercial catalyst for vehicles. It is shown that in SCR converter models a rate expression accounting for NH₃ inhibition of the Standard SCR reaction is needed in order to predict the specific dynamics observed both in lab-scale and in engine test bench runs upon switching on and off the ammonia feed. Two redox, dual site kinetic models are developed which ascribe such inhibition to the spill-over of ammonia from its adsorption sites, associated with the zeolite, to the redox sites, associated with the Fe promoter. Better agreement both with lab-scale intrinsic kinetic runs and with engine test-bench data, particularly during transients associated with dosing of ammonia to the SCR catalyst, is obtained assuming slow migration of NH₃ between the two sites.
Journal Article

An Experimental Study of Gaseous Transverse Injection and Mixing Process in a Simulated Engine Intake Port

2013-04-08
2013-01-0561
The flow field resulting from injecting a gas jet into a crossflow confined in a narrow square duct has been studied under steady regime using schlieren imaging and laser Doppler velocimetry (LDV). This transparent duct is intended to simulate the intake port of an internal combustion engine fueled by gaseous mixture, and the jet is issued from a round nozzle. The schlieren images show that the relative small size of the duct would confine the development of the transverse jet, and the interaction among jet and sidewalls strongly influences the mixing process between jet and crossflow. The mean velocity and turbulence fields have been studied in detail through LDV measurements, at both center plane and several cross sections. The well-known flow feature formed by a counter rotating vortex pair (CVP) has been observed, which starts to appear at the jet exit section and persists far downstream contributing to enhancing mixing process.
Technical Paper

An Innovative 4WD Controlled Powertrain for High Performance Vehicle

2007-04-16
2007-01-0926
The potentialities shown by controlled differentials is making the automotive industry to explore this field. While VDC systems can only guarantee a safe behaviour at limit, a controlled differential can also increase the handling performance. The system derives from a RWD driveline with a semi-active differential, to which has been added a controlled wet clutch that directly connects the engine to the front axle. This device allows to distribute the drive torque between the two axles. It can be easily understood that in this device the torque distribution doesn't depend only from the central clutch action, but also from the engaged gear. Because of this particular layout this system can't work in the whole gear because thermal problems due to kinematical reasons. So the central clutch controller has to consider the gear position too.
Technical Paper

Modeling n-dodecane Spray Combustion with a Representative Interactive Linear Eddy Model

2017-03-28
2017-01-0571
Many new combustion concepts are currently being investigated to further improve engines in terms of both efficiency and emissions. Examples include homogeneous charge compression ignition (HCCI), lean stratified premixed combustion, stratified charge compression ignition (SCCI), and high levels of exhaust gas recirculation (EGR) in diesel engines, known as low temperature combustion (LTC). All of these combustion concepts have in common that the temperatures are lower than in traditional spark ignition or diesel engines. To further improve and develop combustion concepts for clean and highly efficient engines, it is necessary to develop new computational tools that can be used to describe and optimize processes in nonstandard conditions, such as low temperature combustion.
Technical Paper

Gas Exchange and Injection Modeling of an Advanced Natural Gas Engine for Heavy Duty Applications

2017-09-04
2017-24-0026
The scope of the work presented in this paper was to apply the latest open source CFD achievements to design a state of the art, direct-injection (DI), heavy-duty, natural gas-fueled engine. Within this context, an initial steady-state analysis of the in-cylinder flow was performed by simulating three different intake ducts geometries, each one with seven different valve lift values, chosen according to an estabilished methodology proposed by AVL. The discharge coefficient (Cd) and the Tumble Ratio (TR) were calculated in each case, and an optimal intake ports geometry configuration was assessed in terms of a compromise between the desired intensity of tumble in the chamber and the satisfaction of an adequate value of Cd. Subsequently, full-cycle, cold-flow simulations were performed for three different engine operating points, in order to evaluate the in-cylinder development of TR and turbulent kinetic energy (TKE) under transient conditions.
Technical Paper

Evaluation of Wall Heat Flux Models for Full Cycle CFD Simulation of Internal Combustion Engines under Motoring Operation

2017-09-04
2017-24-0032
The present work details a study of the heat flux through the walls of an internal combustion engine. The determination of this heat flux is an important aspect in engine optimization, as it influences the power, efficiency and the emissions of the engine. Therefore, a set of simulation tools in the OpenFOAM® software has been developed, that allows the calculation of the heat transfer through engine walls for ICEs. Normal practice in these types of engine simulations is to apply a wall function model to calculate the heat flux, rather than resolving the complete thermo-viscous boundary layer, and perform simulations of the closed engine cycle. When dealing with a complex engine, this methodology will reduce the overall computational cost. It however increases the need to rely on assumptions on both the initial flow field and the behavior in the near-wall region.
Technical Paper

CFD Investigation of the Impact of Electrical Heating on the Light-off of a Diesel Oxidation Catalyst

2018-04-03
2018-01-0961
In the last years, as a response to the more and more restrictive emission legislation, new devices (SRC, DOC, NOx-trap, DPF) have been progressively introduced as standard components of modern after-treatment system for Diesel engines. In addition, the adoption of electrical heating is nowadays regarded with interest as an effective solution to promote the light-off of the catalyst at low temperature, especially at the start-up of the engine and during the low load operation of the engine typical of the urban drive. In this work, a state-of-the-art 48 V electrical heated catalyst is considered, in order to investigate its effect in increasing the abatement efficiency of a standard DOC. The electrical heating device considered is based on a metallic support, arranged in a spiral layout, and it is heated by the Joule effect due to the passage of the electrical current.
Technical Paper

Application of the CTC Model to Predict Combustion and Pollutant Emissions in a Common-Rail Diesel Engine Operating with Multiple Injections and High EGR

2012-04-16
2012-01-0154
Multiple injections and high EGR rates are now widely adopted for combustion and emissions control in passenger car diesel engines. In a wide range of operating conditions, fuel is provided through one to five separated injection events, and recirculated gas fractions between 0 to 30% are used. Within this context, fast and reliable multi-dimensional models are necessary to define suitable injection strategies for different operating points and reduce both the costs and time required for engine design and development. In this work, the authors have applied a modified version of the characteristic time-scale combustion model (CTC) to predict combustion and pollutant emissions in diesel engines using advanced injection strategies. The Shell auto-ignition model is used to predict auto-ignition, with a suitable set of coefficients that were tuned for diesel fuel.
Technical Paper

A Low Temperature Pathway Operating the Reduction of Stored Nitrates in Pt-Ba/Al2O3 Lean NOx Trap Systems

2006-04-03
2006-01-1368
In this paper the low temperature reduction process of nitrates stored at high temperatures over model Pt-Ba/Al2O3 LNT catalysts using both H2 and C3H6 is analyzed. The results indicate that over the Pt-Ba/Al2O3 catalyst the reduction of stored NOx with both H2 and C3H6 occurs at temperature below those corresponding to their thermal stability. Accordingly, the reduction process occurs through a Pt-catalyzed surface reaction, which does not involve, as a preliminary step, the thermal decomposition of the adsorbed NOx species. The occurrence of such a pathway also requires the co-presence of the storage element and of the noble metal on the same support.
Technical Paper

Development of Fully-Automatic Parallel Algorithms for Mesh Handling in the OpenFOAM®-2.2.x Technology

2013-09-08
2013-24-0027
The current development to set up an automatic procedure for automatic mesh generation and automatic mesh motion for internal combustion engine simulation in OpenFOAM®-2.2.x is here described. In order to automatically generate high-quality meshes of cylinder geometries, some technical issues need to be addressed: 1) automatic mesh generation should be able to control anisotropy and directionality of the grid; 2) during piston and valve motion, cells and faces must be introduced and removed without varying the overall area and volume of the cells, to avoid conservation errors. In particular, interpolation between discrete fields is frequent in computational physics: the use of adaptive and non-conformal meshes necessitates the interpolation of fields between different mesh regions. Interpolation problems also arise in areas such as model coupling, model initialization and visualisation.
Technical Paper

Effect of Gas Density and Temperature on Air Entrainment in a Transient Diesel Spray

1996-02-01
960862
The air entrainment in a transient diesel spray was studied using laser Doppler anemometry to provide information on the effect of gas density and temperature. The spray was injected vertically into a confined quiescent atmosphere and the entrained mass flow rate was evaluated by measuring the air velocity component normal to a cylindrical geometric surface surrounding the spray, and extending to about 200 nozzle diameters (50 mm). The experimental results, relative to a density range from 0.84 to 7.02 kg/m3 and a temperature range from 293 to 473 K, indicate that the non dimensional entrainment rate, averaged in time over the main injection period, depends on the distance from the nozzle and both gas density and temperature. A first analysis, based on the available data, allowed to quantify the dependence and provided a correlation with such variables.
Technical Paper

Integrated Breathing Model and Multi-Variable Control Approach for Air Management in Advanced Gasoline Engine

2006-04-03
2006-01-0658
The evolution of automotive engines calls for the design of electronic control systems optimizing the engine performance in terms of reduced fuel consumption and pollutant emissions. However, the opportunities provided by modern engines have not yet completely exploited, since the adopted control strategies are still largely developed in a very heuristic way and rely on a number of SISO (Single Input Single Output) designs. On the contrary, the strong coupling between the available actuators calls for a MIMO (Multi Input Multi Output) control design approach. To this regard, the availability of reliable dynamic engine models plays an important role in the design of engine control and diagnostic systems, allowing for a significant reduction of the development times and costs. This paper presents a control-oriented model of the air-path system of today's gasoline internal combustion engines.
X