Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions

2009-04-20
2009-01-1102
Premixed Charge Compression Ignition (PCCI), a Low Temperature Combustion (LTC) strategy for diesel engines is of increasing interest due to its potential to simultaneously reduce soot and NOx emissions. However, the influence of mixture preparation on combustion phasing and heat release rate in LTC is not fully understood. In the present study, the influence of injection timing on mixture preparation, combustion and emissions in PCCI mode is investigated by experimental and computational methods. A sequential coupling approach of 3D CFD with a Stochastic Reactor Model (SRM) is used to simulate the PCCI engine. The SRM accounts for detailed chemical kinetics, convective heat transfer and turbulent micro-mixing. In this integrated approach, the temperature-equivalence ratio statistics obtained using KIVA 3V are mapped onto the stochastic particle ensemble used in the SRM.
Journal Article

Real-Time Optimal Energy Management of Heavy Duty Hybrid Electric Vehicles

2013-04-08
2013-01-1748
The performance of energy flow management strategies is essential for the success of hybrid electric vehicles (HEVs), which are considered amongst the most promising solutions for improving fuel economy as well as reducing exhaust emissions. The heavy duty HEVs engaged in cycles characterized by start-stop configuration has attracted widely interests, especially in off-road applications. In this paper, a fuzzy equivalent consumption minimization strategy (F-ECMS) is proposed as an intelligent real-time energy management solution for heavy duty HEVs. The online optimization problem is formulated as minimizing a cost function, in terms of weighted fuel power and electrical power. A fuzzy rule-based approach is applied on the weight tuning within the cost function, with respect to the variations of the battery state-of-charge (SOC) and elapsed time.
Journal Article

The Big Data Application Strategy for Cost Reduction in Automotive Industry

2014-09-30
2014-01-2410
Cost reduction in the automotive industry becomes a widely-adopted operational strategy not only for Original Equipment Manufacturers (OEMs) that take cost leader generic corporation strategy, but also for many OEMs that take differentiation generic corporation strategy. Since differentiation generic strategy requires an organization to provide a product or service above the industry average level, a premium is typically included in the tag price for those products or services. Cost reduction measures could increase risks for the organizations that pursue differentiation strategy. Although manufacturers in the automotive industry dramatically improved production efficiency in past ten years, they are still facing the pressure of cost control. The big challenge in cost control for automakers and suppliers is increasing prices of raw materials, energy and labor costs. These costs create constraints for the traditional economic expansion model.
Journal Article

Optimal Charging of Electric Vehicles using a Stochastic Dynamic Programming Model and Price Prediction

2015-04-14
2015-01-0302
The idea of grid friendly charging is to use electricity from the grid to charge batteries when electricity is available in surplus and cheap. The goal is twofold: to avoid putting additional load on the electricity grid and to reduce the cost to the consumer. To achieve this, a smart meter and a tariff with variable electricity prices has to be in place. In Day Ahead tariff (DA), prices are announced in advance for the next day, and this information can be used to select the cheapest times to charge the battery by the required amount. The optimization method is very simple, and it only has to be run once per day. However, the balance of supply and demand is not fully known in advance. Therefore Real Time Pricing (RTP) tariff supplies electricity at spot market rate depending on the current balance.
Journal Article

The Visualization of Soot Late in the Diesel Combustion Process by Laser Induced Incandescence with a Vertical Laser Sheet

2015-04-14
2015-01-0801
Although soot-formation processes in diesel engines have been well characterized during the mixing-controlled burn, little is known about the distribution of soot throughout the combustion chamber after the end of appreciable heat release during the expansion and exhaust strokes. Hence, the laser-induced incandescence (LII) diagnostic was developed to visualize the distribution of soot within an optically accessible single-cylinder direct-injection diesel engine during this period. The developed LII diagnostic is semi-quantitative; i.e., if certain conditions (listed in the Appendix) are true, it accurately captures spatial and temporal trends in the in-cylinder soot field. The diagnostic features a vertically oriented and vertically propagating laser sheet that can be translated across the combustion chamber, where “vertical” refers to a direction parallel to the axis of the cylinder bore.
Journal Article

Obtaining Structure-borne Input for Hybrid FEA/SEA Engine Enclosure Models through a Simplified Transfer Path Analysis

2015-06-15
2015-01-2349
Structure-borne inputs to hybrid FEA/SEA models could have significant effects on the model prediction accuracy. The purpose of this work was to obtain the structure-borne noise (SBN) inputs using a simplified transfer path analysis (TPA) and identify the significance of the structure-borne and airborne contributions to the spectator sound power of an engine with enclosure for future modeling references. Force inputs to the enclosure from the engine were obtained and used as inputs to a hybrid engine enclosure model for sound prediction.
Journal Article

An Erosion Aggressiveness Index (EAI) Based on Pressure Load Estimation Due to Bubble Collapse in Cavitating Flows Within the RANS Solvers

2015-09-06
2015-24-2465
Despite numerous research efforts, there is no reliable and widely accepted tool for the prediction of erosion prone material surfaces due to collapse of cavitation bubbles. In the present paper an Erosion Aggressiveness Index (EAI) is proposed, based on the pressure loads which develop on the material surface and the material yield stress. EAI depends on parameters of the liquid quality and includes the fourth power of the maximum bubble radius and the bubble size number density distribution. Both the newly proposed EAI and the Cavitation Aggressiveness Index (CAI), which has been previously proposed by the authors based on the total derivative of pressure at locations of bubble collapse (DP/Dt>0, Dα/Dt<0), are computed for a cavitating flow orifice, for which experimental and numerical results on material erosion have been published. The predicted surface area prone to cavitation damage, as shown by the CAI and EAI indexes, is correlated with the experiments.
Journal Article

An Experimental Investigation into DEF Dosing Strategies for Heavy Duty Vehicle Applications

2015-04-14
2015-01-1028
In recent years urea selective catalytic reduction (SCR) has become the principal method of NOx abatement within heavy duty (HD) diesel exhaust systems; however, with upcoming applications demanding NOx reduction efficiencies of above 96 % on engines producing upwards of 10 g·kWh−1 NOx, future diesel exhaust fluid (DEF) dosing systems will be required to operate stably at significantly increased dosing rates. Developing a dosing system capable of meeting the increased performance requirements demands an improved understanding of how DEF sprays interact with changing exhaust flows. This study has investigated four production systems representing a diverse range of dosing strategies in order to determine how performance is influenced by spray structure and identify promising strategies for further development. The construction of an optically accessible hot-air flow rig has enabled visualisation of DEF injection into flows representative of HD diesel exhaust conditions.
Journal Article

An Objective Measure for Automotive Surface Contamination

2018-04-03
2018-01-0727
Surface contamination, or soiling, of the exterior of road vehicles can be unsightly, can reduce visibility and customer satisfaction, and, with the increasing application of surface-mounted sensors, can degrade the performance of advanced driver-assistance systems. Experimental methods of evaluating surface contamination are increasingly used in the product development process, but the results are generally subjective. The use of computational methods for predicting contamination makes objective measures possible, but comparable data from experiment is an important validation requirement. This article describes the development of an objective measure of surface contamination arising during experiments. A series of controlled experiments using ultraviolet (UV) dye-doped water are conducted to develop a robust methodology. This process is then applied to a simplified contamination test.
Journal Article

Modelling the Effect of Spray Breakup, Coalescence, and Evaporation on Vehicle Surface Contamination Dynamics

2018-04-03
2018-01-0705
Vehicle surface contamination is an important design consideration as it affects drivers’ vision and the performance of onboard camera and sensor systems. Previous work has shown that eddy-resolving methods are able to accurately capture the flow field and particle transport, leading to good agreement for vehicle soiling with experiments. What is less clear is whether the secondary breakup, coalescence, and evaporation of liquid particles play an important role in spray dynamics. The work reported here attempts to answer this and also give an idea of the computational cost associated with these extra physics models. A quarter-scale generic Sports Utility Vehicle (SUV) model is used as a test case in which the continuous phase is solved using the Spalart-Allmaras Improved Delayed Detached Eddy Simulation (IDDES) model. The dispersed phase is computed concurrently with the continuous phase using the Lagrangian approach.
Journal Article

A Drag Coefficient for Test Cycle Application

2018-04-03
2018-01-0742
The drag coefficient at zero yaw angle is the single parameter usually used to define the aerodynamic drag characteristics of a passenger car. However, this is usually the minimum drag condition and will, for example, lead to an underestimate of the effect of aerodynamic drag on fuel consumption because the important influence of the natural wind has been excluded. An alternative measure of aerodynamic drag should take into account the effect of nonzero yaw angles and a variant of wind-averaged drag is suggested as the best option. A wind-averaged drag coefficient (CDW) is usually derived for a particular vehicle speed using a representative wind speed distribution. In the particular case where the road speed distribution is specified, as for a drive cycle to determine fuel economy, a relevant drag coefficient can be derived by using a weighted road speed.
Journal Article

The Study of a Bi-Stable Wake Region of a Generic Squareback Vehicle using Tomographic PIV

2016-04-05
2016-01-1610
This paper demonstrates the use of large scale tomographic PIV to study the wake region of a Windsor model. This forms part of a larger study intending to understand the mechanisms that drive drag force changes when rear end optimizations are applied. For the first time, tomographic PIV has been applied to a large airflow volume (0.125m3, 500 x 500 x 500mm), which is of sufficient size to capture the near wake of a 25% scale Windsor model in a single measurement. The measurement volume is illuminated using a 200mJ double pulsed Nd:Yag laser fitted with a volume optic and seeded with 300μm helium filled soap bubbles generated by a novel high output seeder. Images were captured using four 4M Pixel LaVision cameras. The tomographic results are shown to produce high quality data with the setup used, but further improvements and tests at higher Reynolds number could be conducted if an additional seeding rake was used to increase seeding density.
Journal Article

Experimental Study on the Burning Rate of Methane and PRF95 Dual Fuels

2016-04-05
2016-01-0804
Natural gas as an alternative fuel offers the potential of clean combustion and emits relatively low CO2 emissions. The main constitute of natural gas is methane. Historically, the slow burning speed of methane has been a major concern for automotive applications. Literature on experimental methane-gasoline Dual Fuel (DF) studies on research engines showed that the DF strategy is improving methane combustion, leading to an enhanced initial establishment of burning speed even compared to that of gasoline. The mechanism of such an effect remains unclear. In the present study, pure methane (representing natural gas) and PRF95 (representing gasoline) were supplied to a constant volume combustion vessel to produce a DF air mixture. Methane was added to PRF95 in three different energy ratios 25%, 50% and 75%. Experiments have been conducted at equivalence ratios of 0.8, 1, 1.2, initial pressures of 2.5, 5 and 10 bar and a temperature of 373K.
Journal Article

Design and Optimisation of the Propulsion Control Strategy for a Pneumatic Hybrid City Bus

2016-04-05
2016-01-1175
A control strategy has been designed for a city bus equipped with a pneumatic hybrid propulsion system. The control system design is based on the precise management of energy flows during both energy storage and regeneration. Energy recovered from the braking process is stored in the form of compressed air that is redeployed for engine start and to supplement the engine air supply during vehicle acceleration. Operation modes are changed dynamically and the energy distribution is controlled to realize three principal functions: Stop-Start, Boost and Regenerative Braking. A forward facing simulation model facilitates an analysis of the vehicle dynamic performance, engine transient response, fuel economy and energy usage.
Journal Article

Coupled Level-Set Volume of Fluid Simulations of Water Flowing Over a Simplified Drainage Channel With and Without Air Coflow

2017-03-28
2017-01-1552
The motivation for this paper is to predict the flow of water over exterior surfaces of road vehicles. We present simulations of liquid flows on solid surfaces under the influence of gravity with and without the addition of aerodynamic forces on the liquid. This is done using an implementation of a Coupled Level Set Volume of Fluid method (CLSVOF) multiphase approach implemented in the open source OpenFOAM CFD code. This is a high fidelity interface-resolving method that solves for the velocity field in both phases without restrictions on the flow regime. In the current paper the suitability of the approach to Exterior Water Management (EWM) is demonstrated using the representative test cases of a continuous liquid rivulet flowing along an inclined surface with a channel located downstream perpendicular to the oncoming flow.
Journal Article

Understanding Hydrocarbon Emissions in Heavy Duty Diesel Engines Combining Experimental and Computational Methods

2017-03-28
2017-01-0703
Fundamental understanding of the sources of fuel-derived Unburned Hydrocarbon (UHC) emissions in heavy duty diesel engines is a key piece of knowledge that impacts engine combustion system development. Current emissions regulations for hydrocarbons can be difficult to meet in-cylinder and thus after treatment technologies such as oxidation catalysts are typically used, which can be costly. In this work, Computational Fluid Dynamics (CFD) simulations are combined with engine experiments in an effort to build an understanding of hydrocarbon sources. In the experiments, the combustion system design was varied through injector style, injector rate shape, combustion chamber geometry, and calibration, to study the impact on UHC emissions from mixing-controlled diesel combustion.
Technical Paper

Parametric Study of Reduced Span Side Tapering on a Simplified Model with Wheels

2020-04-14
2020-01-0680
Many modern vehicles have blunt rear end geometries for design aesthetics and practicality; however, such vehicles are potentially high drag. The application of tapering; typically applied to an entire edge of the base of the geometry is widely reported as a means of reducing drag, but in many cases, this is not practical on real vehicles. In this study side tapers are applied to only part of the side edge of a simplified automotive geometry, to show the effects of practical implementations of tapers. The paper reports on a parametric study undertaken in Loughborough University’s Large Wind Tunnel with the ¼ scale Windsor model equipped with wheels. The aerodynamic effect of implementing partial side edge tapers is assessed from a full height taper to a 25% taper in both an upper and lower body configuration. These were investigated using force and moment coefficients, pressure measurements and planar particle image velocimetry (PIV).
Technical Paper

Probabilistic Analysis of Bimodal State Distributions in SCR Aftertreatment Systems

2020-04-14
2020-01-0355
Sensor selection for the control of modern powertrains is a recognised technical challenge. The key question is which set of sensors is best suited for an effective control strategy? This paper addresses the question through probabilistic modelling and Bayesian analysis. By quantifying uncertainties in the model, the propagation of sensor information throughout the model can be observed. The specific example is an abstract model of the slip behaviour of Selective Catalytic Reduction (SCR) DeNOx aftertreatment systems. Due to the ambiguity of the sensor reading, linearization-based approaches including the Extended Kalman Filter, or the Unscented Kalman Filter are not successful in resolving this problem. The stochastic literature suggests approximating these nonlinear distributions using methods such as Markov Chain Monte Carlo (MCMC), which is able in principle to resolve bimodal or multimodal results.
Technical Paper

Holistic Thermal Energy Modelling for Full Hybrid Electric Vehicles (HEVs)

2020-04-14
2020-01-0151
Full hybrid electric vehicles are usually defined by their capability to drive in a fully electric mode, offering the advantage that they do not produce any emissions at the point of use. This is particularly important in built up areas, where localized emissions in the form of NOx and particulate matter may worsen health issues such as respiratory disease. However, high degrees of electrification also mean that waste heat from the internal combustion engine is often not available for heating the cabin and for maintaining the temperature of the powertrain and emissions control system. If not managed properly, this can result in increased fuel consumption, exhaust emissions, and reduced electric-only range at moderately high or low ambient temperatures negating many of the benefits of the electrification. This paper describes the development of a holistic, modular vehicle model designed for development of an integrated thermal energy management strategy.
Technical Paper

Numerical Investigation of Heat Retention and Warm-Up with Thermal Encapsulation of Powertrain

2020-04-14
2020-01-0158
Powertrain thermal encapsulation has the potential to improve fuel consumption and CO2 via heat retention. Heat retained within the powertrain after a period of engine-off, can increase the temperature of the next engine start hours after key-off. This in turn reduces inefficiencies associated with sub-optimal temperatures such as friction. The Ambient Temperature Correction Test was adopted in the current work which contains two World-wide harmonised Light duty Test Procedure (WLTP) cycles separated by a 9-hour soak period. A coupled 1D - 3D computational approach was used to capture heat retention characteristics and subsequent warm-up effects. A 1-D powertrain warm-up model was developed in GT-Suite to capture the thermal warm-up characteristics of the powertrain. The model included a temperature dependent friction model, the thermal-hydraulic characteristics of the cooling and lubrication circuits as well as parasitic losses associated with pumps.
X