Refine Your Search

Topic

Author

Search Results

Journal Article

Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions

2009-04-20
2009-01-1102
Premixed Charge Compression Ignition (PCCI), a Low Temperature Combustion (LTC) strategy for diesel engines is of increasing interest due to its potential to simultaneously reduce soot and NOx emissions. However, the influence of mixture preparation on combustion phasing and heat release rate in LTC is not fully understood. In the present study, the influence of injection timing on mixture preparation, combustion and emissions in PCCI mode is investigated by experimental and computational methods. A sequential coupling approach of 3D CFD with a Stochastic Reactor Model (SRM) is used to simulate the PCCI engine. The SRM accounts for detailed chemical kinetics, convective heat transfer and turbulent micro-mixing. In this integrated approach, the temperature-equivalence ratio statistics obtained using KIVA 3V are mapped onto the stochastic particle ensemble used in the SRM.
Journal Article

The Visualization of Soot Late in the Diesel Combustion Process by Laser Induced Incandescence with a Vertical Laser Sheet

2015-04-14
2015-01-0801
Although soot-formation processes in diesel engines have been well characterized during the mixing-controlled burn, little is known about the distribution of soot throughout the combustion chamber after the end of appreciable heat release during the expansion and exhaust strokes. Hence, the laser-induced incandescence (LII) diagnostic was developed to visualize the distribution of soot within an optically accessible single-cylinder direct-injection diesel engine during this period. The developed LII diagnostic is semi-quantitative; i.e., if certain conditions (listed in the Appendix) are true, it accurately captures spatial and temporal trends in the in-cylinder soot field. The diagnostic features a vertically oriented and vertically propagating laser sheet that can be translated across the combustion chamber, where “vertical” refers to a direction parallel to the axis of the cylinder bore.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Journal Article

An Efficient Level-Set Flame Propagation Model for Hybrid Unstructured Grids Using the G-Equation

2016-04-05
2016-01-0582
Computational fluid dynamics of gas-fueled large-bore spark ignition engines with pre-chamber ignition can speed up the design process of these engines provided that 1) the reliability of the results is not affected by poor meshing and 2) the time cost of the meshing process does not negatively compensate for the advantages of running a computer simulation. In this work a flame propagation model that runs with arbitrary hybrid meshes was developed and coupled with the KIVA4-MHI CFD solver, in order to address these aims. The solver follows the G-Equation level-set method for turbulent flame propagation by Tan and Reitz, and employs improved numerics to handle meshes featuring different cell types such as hexahedra, tetrahedra, square pyramids and triangular prisms. Detailed reaction kinetics from the SpeedCHEM solver are used to compute the non-equilibrium composition evolution downstream and upstream of the flame surface, where chemical equilibrium is instead assumed.
Journal Article

Understanding Hydrocarbon Emissions in Heavy Duty Diesel Engines Combining Experimental and Computational Methods

2017-03-28
2017-01-0703
Fundamental understanding of the sources of fuel-derived Unburned Hydrocarbon (UHC) emissions in heavy duty diesel engines is a key piece of knowledge that impacts engine combustion system development. Current emissions regulations for hydrocarbons can be difficult to meet in-cylinder and thus after treatment technologies such as oxidation catalysts are typically used, which can be costly. In this work, Computational Fluid Dynamics (CFD) simulations are combined with engine experiments in an effort to build an understanding of hydrocarbon sources. In the experiments, the combustion system design was varied through injector style, injector rate shape, combustion chamber geometry, and calibration, to study the impact on UHC emissions from mixing-controlled diesel combustion.
Technical Paper

Utilization of Vehicle Connectivity for Improved Energy Consumption of a Speed Harmonized Cohort of Vehicles

2020-04-14
2020-01-0587
Improving vehicle response through advanced knowledge of traffic behavior can lead to large improvements in energy consumption for the single isolated vehicle. This energy savings across multiple vehicles can even be larger if they travel together as a cohort in harmonization. Additionally, if the vehicles have enough information about their immediate path of travel, and other vehicles’ in that path (and their respective critical forward-looking information), they can safely drive close enough to each other to share aerodynamic load. These energy savings can be upwards of multiple percentage points, and are dependent on several criteria. This analysis looks at criteria that contributes to energy savings for a cohort of vehicles in synchronous motion, as well as describes a study that allows for better understanding of the potential benefits of different types of cohorted vehicles in different platoon arrangements.
Technical Paper

Experimental Investigation of the Compression Ignition Process of High Reactivity Gasoline Fuels and E10 Certification Gasoline using a High-Pressure Direct Injection Gasoline Injector

2020-04-14
2020-01-0323
Gasoline compression ignition (GCI) technology shows the potential to obtain high thermal efficiencies while maintaining low soot and NOx emissions in light-duty engine applications. Recent experimental studies and numerical simulations have indicated that high reactivity gasoline-like fuels can further enable the benefits of GCI combustion. However, there is limited empirical data in the literature studying the gasoline compression ignition process at relevant in-cylinder conditions, which are required for further optimizing combustion system designs. This study investigates the temporal and spatial evolution of the compression ignition process of various high reactivity gasoline fuels with research octane numbers (RON) of 71, 74 and 82, as well as a conventional RON 97 E10 gasoline fuel. A ten-hole prototype gasoline injector specifically designed for GCI applications capable of injection pressures up to 450 bar was used.
Journal Article

An Experimental Investigation of Low-Soot and Soot-Free Combustion Strategies in a Heavy-Duty, Single-Cylinder, Direct-Injection, Optical Diesel Engine

2011-08-30
2011-01-1812
High-efficiency, clean-combustion strategies for heavy-duty diesel engines are critical for meeting stringent emissions regulations and reducing the costs of aftertreatment systems that are currently required to meet these regulations. Results from previous constant-volume combustion-vessel experiments using a single jet of fuel under quiescent conditions have shown that mixing-controlled soot-free combustion (i.e., combustion where soot is not produced) is possible with #2 diesel fuel. These experiments employed small injector-orifice diameters (≺ 150 μm) and high fuel-injection pressures (≻ 200 MPa) at top-dead-center (TDC) temperatures and densities that could be achievable in modern heavy-duty diesel engines.
Technical Paper

Applying Ball Bearings to the Series Turbochargers for the Caterpillar® Heavy-Duty On-Highway Truck Engines

2007-10-30
2007-01-4235
Fuel is a significant portion of the operating cost for an on-highway diesel engine and fuel economy is important to the economics of shipping most goods in North America. Cat® ACERT™ engine technology is no exception. Ball bearings have been applied to the series turbochargers for the Caterpillar heavy-duty, on-highway diesel truck engines in order to reduce mechanical loss for improved efficiency and lower fuel consumption. Over many years of turbocharger development, much effort has been put into improving the aerodynamic efficiency of the compressor and turbine stages. Over the same span of time, the mechanical bearing losses of a turbocharger have not experienced a significant reduction in power consumption. Most turbochargers continue to use conventional hydrodynamic radial and thrust bearings to support the rotor. While these conventional bearings provide a low cost solution, they do create significant mechanical loss.
Technical Paper

The Calculation of Mass Fraction Burn of Ethanol-Gasoline Blended Fuels Using Single and Two-Zone Models

2008-04-14
2008-01-0320
One-dimensional single-zone and two-zone analyses have been exercised to calculate the mass fraction burned in an engine operating on ethanol/gasoline-blended fuels using the cylinder pressure and volume data. The analyses include heat transfer and crevice volume effects on the calculated mass fraction burned. A comparison between the two methods is performed starting from the derivation of conservation of energy and the method to solve the mass fraction burned rates through the results including detailed explanation of the observed differences and trends. The apparent heat release method is used as a point of reference in the comparison process. Both models are solved using the LU matrix factorization and first-order Euler integration.
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
Technical Paper

Determination of Heat Transfer Augmentation Due to Fuel Spray Impingement in a High-Speed Diesel Engine

2009-04-20
2009-01-0843
As the incentive to produce cleaner and more efficient engines increases, diesel engines will become a primary, worldwide solution. Producing diesel engines with higher efficiency and lower emissions requires a fundamental understanding of the interaction of the injected fuel with air as well as with the surfaces inside the combustion chamber. One aspect of this interaction is spray impingement on the piston surface. Impingement on the piston can lead to decreased combustion efficiency, higher emissions, and piston damage due to thermal loading. Modern high-speed diesel engines utilize high pressure common-rail direct-injection systems to primarily improve efficiency and reduce emissions. However, the high injection pressures of these systems increase the likelihood that the injected fuel will impinge on the surface of the piston.
Technical Paper

Diesel Engine Electric Turbo Compound Technology

2003-06-23
2003-01-2294
A cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar is aimed at demonstrating electric turbo compound technology on a Class 8 truck engine. The goal is to demonstrate the level of fuel efficiency improvement attainable with an electric turbocompound system. The system consists of a turbocharger with an electric motor/generator integrated into the turbo shaft. The generator extracts surplus power at the turbine, and the electricity it produces is used to run a motor mounted on the engine crankshaft, recovering otherwise wasted energy in the exhaust gases. The electric turbocompound system also provides more control flexibility in that the amount of power extracted can be varied. This allows for control of engine boost and thus air/fuel ratio. The paper presents the status of development of an electric turbocompound system for a Caterpillar heavy-duty on-highway truck engine.
Technical Paper

Tribodynamics of a New De-Clutch Mechanism Aimed for Engine Downsizing in Off-Road Heavy-Duty Vehicles

2017-06-05
2017-01-1835
Clutches are commonly utilised in passenger type and off-road heavy-duty vehicles to disconnect the engine from the driveline and other parasitic loads. In off-road heavy-duty vehicles, along with fuel efficiency start-up functionality at extended ambient conditions, such as low temperature and intake absolute pressure are crucial. Off-road vehicle manufacturers can overcome the parasitic loads in these conditions by oversizing the engine. Caterpillar Inc. as the pioneer in off-road technology has developed a novel clutch design to allow for engine downsizing while vehicle’s performance is not affected. The tribological behaviour of the clutch will be crucial to start engagement promptly and reach the maximum clutch capacity in the shortest possible time and smoothest way in terms of dynamics. A multi-body dynamics model of the clutch system is developed in MSC ADAMS. The flywheel is introducing the same speed and torque as the engine (represents the engine input to the clutch).
Technical Paper

Examination of Factors Impacting Unaccounted Fuel Post GDI Fuel Injector Closing

2018-04-03
2018-01-0300
The characteristics of gasoline sprayed directly into combustion chambers are of critical importance to engine out emissions and combustion system development. The optimization of the spray characteristics to match the in-cylinder flow field, chamber geometry, and spark location is a vital tasks during the development of an engine combustion strategy. Furthermore, the presence of liquid fuel during combustion in Spark-Ignition (SI) engines causes increased hydro-carbon (HC) emissions. Euro 6, LEVIII, and US Tier 3 emissions regulations reduce the allowable particulate mass significantly from the previous standards. LEVIII standards reduce the acceptable particulate emission to 1 mg/mile. A good DISI strategy vaporizes the correct amount of fuel just in time for optimal power output with minimal emissions. The opening and closing phases of DISI injectors are crucial to this task as the spray produces larger droplets during both theses phases.
Technical Paper

Novel Approach to Integration of Turbocompounding, Electrification and Supercharging Through Use of Planetary Gear System

2018-04-03
2018-01-0887
Technologies that provide potential for significant improvements in engine efficiency include, engine downsizing/downspeeding (enabled by advanced boosting systems such as an electrically driven compressor), waste heat recovery through turbocompounding or organic Rankine cycle and 48 V mild hybridization. FEV’s Integrated Turbocompounding/Waste Heat Recovery (WHR), Electrification and Supercharging (FEV-ITES) is a novel approach for integration of these technologies in a single unit. This approach provides a reduced cost, reduced space claim and an increase in engine efficiency, when compared to the independent integration of each of these technologies. This approach is enabled through the application of a planetary gear system. Specifically, a secondary compressor is connected to the ring gear, a turbocompounding turbine or organic Rankine cycle (ORC) expander is connected to the sun gear, and an electric motor/generator is connected to the carrier gear.
Technical Paper

Correlations of Non-Vaporizing Spray Penetration for 3000 Bar Diesel Spray Injection

2013-09-08
2013-24-0033
Increasing fuel injection pressure has enabled reduction of diesel emissions while retaining the advantage of the high thermal efficiency of diesel engines. With production diesel injectors operating in the range from 300 to 2400 bar, there is interest in injection pressures of 3000 bar and higher for further emissions reduction and fuel efficiency improvements. Fundamental understanding of diesel spray characteristics including very early injection and non-vaporizing spray penetration is essential to improve model development and facilitate the integration of advanced injection systems with elevated injection pressure into future diesel engines. Studies were conducted in an optically accessible constant volume combustion vessel under non-vaporizing conditions. Two advanced high pressure multi-hole injectors were used with different hole diameters, number of holes, and flow rates, with only one plume of each injector being imaged to enable high frame rate imaging.
Technical Paper

Development of Plasma Spray Coated Cylinder Liners

1996-02-01
960048
Improved fuel economy and reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, such insulation will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150°C to over 300°C. Since existing ring/liner materials cannot withstand these higher operating temperatures alternatives are needed for this critical tribological interface. This paper describes the development of a cost effective ID grinding technique for machining the bores of plasma sprayed diesel engine cylinder liners.
Technical Paper

Development of the MTU Automatic Shifting Manual Six Speed Transmission

2006-04-03
2006-01-0747
The purpose of this report is to describe the process for the development of the automatically shifting manual transmission control system hardware and software to be used in the MTU Challenge X Equinox, a through-the-road parallel hybrid electric vehicle. The automatically shifting manual transmission was chosen for development, as it combines the ease of use of an automatic transmission with the fuel efficiency of a manual, while eliminating the parasitic losses in the torque converter and the transmission hydraulic pump. This report illustrates the process used to develop the software-in-the loop modeling that was developed for the initial proof of concept. In addition, it describes the development of the control strategy and hardware build for the prototype transmission. To begin the design process research was preformed on existing automatically shifting manuals and manual transmissions in general. From there vehicle subsystems were assembled using Simulink block diagrams.
Journal Article

Development and Implementation of a Mapless, Model Based SCR Control System

2014-07-01
2014-01-9050
Various engine platforms employ Selective Catalytic Reduction (SCR) technology to reduce the tail pipe emissions of oxides of nitrogen (NOx) from diesel engines as part of an overall strategy to comply with the emission regulations in place in various countries. High levels of NOx conversion (greater than 98%) in SCR aftertreatment may provide operating margin to increase overall fuel efficiency. However, to realize the potential fuel efficiency gains, the SCR technology employed should achieve high NOx conversion with limited reductant slip over transient application cycles in addition to steady state operation. A new approach to SCR controls was developed and implemented. This approach does not rely on any maps to determine the amount of urea solution to be dosed, thus significantly reducing calibration and development time and effort when implementing the SCR technology on multiple engine platforms and applications.
X