Refine Your Search

Topic

Search Results

Journal Article

Hydrostatic Wheel Drives for Vehicle Stability Control

2010-04-12
2010-01-0105
Hydrostatic (hydraulic hybrid) drives have demonstrated energy efficiency and emissions reduction benefits. This paper investigates the potential of an independent hydrostatic wheel drive system for implementing a traction-based vehicle lateral stability control system. The system allows an upper level vehicle stability controller to produce a desired corrective yaw moment via a differential distribution of torque to the independent wheel motors. In cornering maneuvers that require braking on any one wheel of the vehicle, the motors can be operated as pumps for re-generating energy into an on-board accumulator. This approach avoids or reduces activation of the friction brakes, thereby reducing energy waste as heat in the brake pads and offering potential savings in brake maintenance costs. For this study, a model of a 4×4 hydrostatic independent wheel drive system is constructed in a causal and modular fashion and is coupled to a 7 DOF vehicle handling dynamics model.
Journal Article

Reduction of Steady-State CFD HVAC Simulations into a Fully Transient Lumped Parameter Network

2014-05-10
2014-01-9121
Since transient vehicle HVAC computational fluids (CFD) simulations take too long to solve in a production environment, the goal of this project is to automatically create a lumped-parameter flow network from a steady-state CFD that solves nearly instantaneously. The data mining algorithm k-means is implemented to automatically discover flow features and form the network (a reduced order model). The lumped-parameter network is implemented in the commercial thermal solver MuSES to then run as a fully transient simulation. Using this network a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track localized temperatures near specific objects (such as equipment in vehicles).
Journal Article

An Erosion Aggressiveness Index (EAI) Based on Pressure Load Estimation Due to Bubble Collapse in Cavitating Flows Within the RANS Solvers

2015-09-06
2015-24-2465
Despite numerous research efforts, there is no reliable and widely accepted tool for the prediction of erosion prone material surfaces due to collapse of cavitation bubbles. In the present paper an Erosion Aggressiveness Index (EAI) is proposed, based on the pressure loads which develop on the material surface and the material yield stress. EAI depends on parameters of the liquid quality and includes the fourth power of the maximum bubble radius and the bubble size number density distribution. Both the newly proposed EAI and the Cavitation Aggressiveness Index (CAI), which has been previously proposed by the authors based on the total derivative of pressure at locations of bubble collapse (DP/Dt>0, Dα/Dt<0), are computed for a cavitating flow orifice, for which experimental and numerical results on material erosion have been published. The predicted surface area prone to cavitation damage, as shown by the CAI and EAI indexes, is correlated with the experiments.
Journal Article

Residual Stress Distributions in Rectangular Bars Due to High Rolling Loads

2016-04-05
2016-01-0424
In this paper, residual stress distributions in rectangular bars due to rolling or burnishing at very high rolling or burnishing loads are investigated by roll burnishing experiments and three-dimensional finite element analyses using ABAQUS. First, roll burnishing experiments on rectangular bars at two roller burnishing loads are presented. The results indicate the higher burnishing load induces lower residual stresses and the higher burnishing load does not improve fatigue lives. Next, in the corresponding finite element analyses, the roller is modeled as rigid and the roller rolls on the flat surface of the bar with a low coefficient of friction. The bar material is modeled as an elastic-plastic strain hardening material with a nonlinear kinematic hardening rule for loading and unloading.
Technical Paper

Alleviating the Magnetic Effects on Magnetometers Using Vehicle Kinematics for Yaw Estimation for Autonomous Ground Vehicles

2020-04-14
2020-01-1025
Autonomous vehicle operation is dependent upon accurate position estimation and thus a major concern of implementing the autonomous navigation is obtaining robust and accurate data from sensors. This is especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU consists of a 3-axis gyro, 3-axis accelerometer, and 3-axis magnetometer. The IMU provides vehicle orientation in 3D space in terms of yaw, roll and pitch. Out of which, yaw is a major parameter to control the ground vehicle’s lateral position during navigation. The accelerometer is responsible for attitude (roll-pitch) estimates and magnetometer is responsible for yaw estimates. However, the magnetometer is prone to environmental magnetic disturbances which induce errors in the measurement.
Journal Article

Model-Based Estimation and Control System Development in a Urea-SCR Aftertreatment System

2008-04-14
2008-01-1324
In this paper, a model-based linear estimator and a non-linear control law for an Fe-zeolite urea-selective catalytic reduction (SCR) catalyst for heavy duty diesel engine applications is presented. The novel aspect of this work is that the relevant species, NO, NO2 and NH3 are estimated and controlled independently. The ability to target NH3 slip is important not only to minimize urea consumption, but also to reduce this unregulated emission. Being able to discriminate between NO and NO2 is important for two reasons. First, recent Fe-zeolite catalyst studies suggest that NOx reduction is highly favored by the NO 2 based reactions. Second, NO2 is more toxic than NO to both the environment and human health. The estimator and control law are based on a 4-state model of the urea-SCR plant. A linearized version of the model is used for state estimation while the full nonlinear model is used for control design.
Journal Article

The Model Integration and Hardware-in-the-Loop (HiL) Simulation Design for the Analysis of a Power-Split Hybrid Electric Vehicle with Electrochemical Battery Model

2017-03-28
2017-01-0001
This paper studies the hardware-in-the-loop (HiL) design of a power-split hybrid electric vehicle (HEV) for the research of HEV lithiumion battery aging. In this paper, an electrochemical model of a lithium-ion battery pack with the characteristics of battery aging is built and integrated into the vehicle model of Autonomie® software from Argonne National Laboratory. The vehicle model, together with the electrochemical battery model, is designed to run in a dSPACE real-time simulator while the powertrain power distribution is managed by a dSPACE MicroAutoBoxII hardware controller. The control interface is designed using dSPACE ControlDesk to monitor the real-time simulation results. The HiL simulation results with the performance of vehicle dynamics and the thermal aging of the battery are presented and analyzed.
Technical Paper

A Connected Controls and Optimization System for Vehicle Dynamics and Powertrain Operation on a Light-Duty Plug-In Multi-Mode Hybrid Electric Vehicle

2020-04-14
2020-01-0591
This paper presents an overview of the connected controls and optimization system for vehicle dynamics and powertrain operation on a light-duty plug-in multi-mode hybrid electric vehicle developed as part of the DOE ARPA-E NEXTCAR program by Michigan Technological University in partnership with General Motors Co. The objective is to enable a 20% reduction in overall energy consumption and a 6% increase in electric vehicle range of a plug-in hybrid electric vehicle through the utilization of connected and automated vehicle technologies. Technologies developed to achieve this goal were developed in two categories, the vehicle control level and the powertrain control level. Tools at the vehicle control level include Eco Routing, Speed Harmonization, Eco Approach and Departure and in-situ vehicle parameter characterization.
Technical Paper

Implementation of the Time Variant Discrete Fourier Transform as a Real-Time Order Tracking Method

2007-05-15
2007-01-2213
The Time Variant Discrete Fourier Transform was implemented as a real-time order tracking method using developed software and commercially available hardware. The time variant discrete Fourier transform (TVDFT) with the application of the orthogonality compensation matrix allows multiple tachometers to be tracked with close and/or crossing orders to be separated in real-time. Signal generators were used to create controlled experimental data sets to simulate tachometers and response channels. Computation timing was evaluated for the data collection procedure and each of the data processing steps to determine how each part of the process affects overall performance. Many difficulties are associated with a real-time data collection and analysis tool and it becomes apparent that an understanding of each component in the system is required to determine where time consuming computation is located.
Technical Paper

Adequacy of Reduced Order Models for Model-Based Control in a Urea-SCR Aftertreatment System

2008-04-14
2008-01-0617
Model-based control strategies are important for meeting the dual objective of maximizing NOx reduction and minimizing NH3 slip in urea-SCR catalysts. To be implementable on the vehicle, the models should capture the essential behavior of the system, while not being computationally intensive. This paper discusses the adequacy of two different reduced order SCR catalyst models and compares their performance with a higher order model. The higher order model assumes that the catalyst has both diffusion and reaction kinetics, whereas the reduced order models contain only reaction kinetics. After describing each model, its parameter identification and model validation based on experiments on a Navistar I6 7.6L engine are presented. The adequacy of reduced order models is demonstrated by comparing the NO, NO2 and NH3 concentrations predicted by the models to their concentrations from the test data.
Technical Paper

The Effects of Chassis Flexibility on Roll Stiffness of a Winston Cup Race Car

1998-11-16
983051
Predictable handling of a racecar may be achieved by tailoring chassis stiffness so that roll stiffness between sprung and unsprung masses are due almost entirely to the suspension. In this work, the effects of overall chassis flexibility on roll stiffness and wheel camber response, will be determined using a finite element model (FEM) of a Winston Cup racecar chassis and suspension. The FEM of the chassis/suspension is built from an assembly of beam and shell elements using geometry measured from a typical Winston cup race configuration. Care has been taken to model internal constraints between degrees-of-freedom (DOF) at suspension to chassis connections, e.g. t ball and pin joints and internal releases. To validate the model, the change in wheel loads due to an applied jacking force that rolls the chassis agrees closely with measured data.
Technical Paper

Finite Element Simulation of Ring Rolling Process

2010-04-12
2010-01-0270
Three-dimensional simulation has become an indispensable approach to develop improved understanding of ring rolling technology, with validity as the basic requirement of the ring rolling simulation. Cold ring rolling is simple conceptually, however complex to analyze as the metal forming process is subject to coupled effects with multiple influencing factors such as sizes of rolls and ring blank, form geometry, material, process parameters, and frictional effects. Investigating the coupled thermal and plastic deformation behavior (the plastic deformation state and its development) in the deformation zone during the process is significant for predicting metal flow in order to control the geometric and tensile residual stress quality of deformed rings, and to provide for cycle time optimization of the cold ring rolling process.
Technical Paper

Roll Stability Control for Torsionally Compliant Vehicles

2010-04-12
2010-01-0102
Rollover prevention is now part of complete vehicle stability control systems for many vehicles. Given that rollover is predominantly associated with vehicles with high centers of gravity, the targeted vehicles for rollover protection include medium and heavy duty commercial vehicles. Unfortunately, the chassis designs of these vehicles are often so compliant in torsion that the ends of the vehicles may have significantly different roll responses at any given time. The potential need to assess and correct for the roll behavior of the front and rear ends of the vehicle is the subject of this paper. Most rollover mitigation research to date has used rigid chassis assumptions in modeling the vehicle. This paper deals with the roll control of vehicles with torsionally flexible chassis based on a yaw-correction system.
Technical Paper

Induction Hardening Simulation of Steel and Cast Iron Components

2002-03-19
2002-01-1557
The induction hardening process involves a complex interaction of electromagnetic heating, rapid cooling, metallurgical phase transformations, and mechanical behavior. Many factors including induction coil design, power, frequency, scanning velocity, workpiece geometry, material chemistry, and quench severity determine a process outcome. This paper demonstrates an effective application of a numerical analysis tool for understanding of induction hardening. First, an overview of the Caterpillar induction simulation tool is briefly discussed. Then, several important features of the model development are examined. Finally, two examples illustrating the use of the computer simulation tool for solving induction-hardening problems related to cracking and distortion are presented. These examples demonstrate the tool's ability to simulate changes in process parameters and latitude of modeling steel or cast iron.
Technical Paper

Torsional Vibration Analysis of Six Speed MT Transmission and Driveline from Road to Lab

2017-06-05
2017-01-1845
When a manual transmission (MT) powertrain is subjected to high speeds and high torques, the vehicle driveshaft, and other components experience an increase in stored potential energy. When the engine and driveshaft are decoupled during an up or down shift, the potential energy is released causing clunk during the shift event. The customer desires a smooth shift thus reduction of clunk will improve experience and satisfaction. In this study, a six-speed MT, rear-wheel-drive (RWD) passenger vehicle was used to experimentally capture acoustic and vibration data during the clunk event. To replicate the in-situ results, additional data was collected and analyzed for powertrain component roll and pitch. A lumped parameter model of key powertrain components was created to replicate the clunk event and correlate with test data. The lumped parameter model was used to modify clutch tip-out parameters, which resulted in reduced prop shaft oscillations.
Technical Paper

Automotive Simulator Based Novice Driver Training with Assessment

2011-04-12
2011-01-1011
Motor vehicle crashes involving novice drivers are significantly higher than matured driver incidents as reported by the National Highway Traffic Safety Administration Fatality Analysis Reporting System (NHTSA-FARS). Researchers around the world and the United States are focused on how to decrease crashes for this driver demographic. Novice drivers usually complete driver education classes as a pre-requisite for full licensure to improve overall knowledge and safety. However, compiled statistics still indicate a need for more in-depth training after full licensure. An opportunity exists to supplement in-vehicle driving with focused learning modules using automotive simulators. In this paper, a training program for “Following Etiquette” and “Situational Awareness” was developed to introduce these key driving techniques and to complete a feasibility study using a driving simulator as the training tool.
Technical Paper

Development of a Simulation for Assessment of Ride Quality of Tractor Semi-Trailers

1993-11-01
932940
Providing acceptable ride quality of tractor semi-trailers is essential to their viability in the freight transport business. This paper describes the development of a design tool that may be used to investigate the vertical dynamic response and ride comfort of these vehicles. A 12 degrees-of-freedom (DOF) model of the vertical dynamic response was developed and simulated in MATLAB [1]. The model is analyzed in the frequency domain. The input to the model is a user-specified power spectral density (PSD) of the vertical road irregularities. Outputs include modal frequencies, damping ratios and mode shapes, frequency response functions, PSDs and root mean square (rms) vertical and longitudinal accelerations in 1/3 octave bands. The rms values are compared with the specifications for ride comfort cited in ISO 2631 [2].
Technical Paper

An Investigation of the Pulse Steer Method for Determining Automobile Handling Qualities

1993-03-01
930829
The use of pulse steering tests for assessment of handling qualities was investigated using a simulation of a comprehensive, nonlinear four wheel model of an automobile. Evaluations were conducted using frequency response functions of yaw rate and lateral acceleration obtained by FFT processing of the simulated response. In addition, as suggested by the work of Mimuro et al [1], four parameters (steady state yaw rate gain, yaw rate natural frequency and damping ratio, and lateral acceleration phase lag at 1 Hz) that characterize these response functions were also obtained by curve fitting techniques. The effects on accuracy of the response functions and the four parameters of variations in pulse shape, duration, and magnitude were investigated. Results from the simulated pulse steer test were compared with those from simulated swept sine steering tests.
Technical Paper

The Effects of Roll Control for Passenger Cars during Emergency Maneuvers

1994-03-01
940224
A nonlinear eight degree of freedom vehicle model has been used to examine the effects of roll stiffness on handling and performance. In addition, various control strategies have been devised which vary the total roll couple distribution in order to improve cornering capability and stopping distance. Of all cases tested, a controller which varies the total roll stiffness based on roll angle feedback, and continuously updates the roll couple distribution as a function of steering wheel angle, braking input, and the total roll stiffness, yields the greatest improvements in collision avoidance.
Technical Paper

An Investigation of the Effects of Roll Control on Handling and Stability of Passenger Vehicles During Severe Lane Change Maneuvers

1995-02-01
950305
The control of body roll on passenger vehicles can be used as a tool for controlling the “weight shift” that occurs during maneuvering. Distribution of load to the tires will determine the ability of each tire to generate lateral forces required for the maneuver and thus will significantly affect handling. In this investigation, the effects on weight shift and hence, on handling, of total roll stiffness, front to rear roll stiffness distribution, total roll damping, and roll damping distribution were examined. These results were then used to guide the development and analysis of several roll control algorithms. The results of the investigation indicate that roll control can be effective in improving handling and stability. However, simulation of the control algorithms showed that the controllers must be specifically tuned for the vehicle in which they are to be used.
X