Refine Your Search

Topic

Author

Search Results

Journal Article

Realization of Ground Effects on Snowmobile Pass-by Noise Testing

2009-05-19
2009-01-2229
Noise concerns regarding snowmobiles have increased in the recent past. Current standards, such as SAE J192 are used as guidelines for government agencies and manufacturers to regulate noise emissions for all manufactured snowmobiles. Unfortunately, the test standards available today produce results with variability that is much higher than desired. The most significant contributor to the variation in noise measurements is the test surface. The test surfaces can either be snow or grass and affects the measurement in two very distinct ways: sound propagation from the source to the receiver and the operational behavior of the snowmobile. Data is presented for a known sound pressure speaker source and different snowmobiles on various test days and test surfaces. Relationships are shown between the behavior of the sound propagation and track interaction to the ground with the pass-by noise measurements.
Journal Article

Measurement of Diesel Spray Formation and Combustion upon Different Nozzle Geometry using Hybrid Imaging Technique

2014-04-01
2014-01-1410
High pressure diesel sprays were visualized under vaporizing and combusting conditions in a constant-volume combustion vessel. Near-simultaneous visualization of vapor and liquid phase fuel distribution were acquired using a hybrid shadowgraph/Mie-scattering imaging setup. This imaging technique used two pulsed LED's operating in an alternative manner to provide proper light sources for both shadowgraph and Mie scattering. In addition, combustion cases under the same ambient conditions were visualized through high-speed combustion luminosity measurement. Two single-hole diesel injectors with same nozzle diameters (100μm) but different k-factors (k0 and k1.5) were tested in this study. Detailed analysis based on spray penetration rate curves, rate of injection measurements, combustion indicators and 1D model comparison have been performed.
Journal Article

An Erosion Aggressiveness Index (EAI) Based on Pressure Load Estimation Due to Bubble Collapse in Cavitating Flows Within the RANS Solvers

2015-09-06
2015-24-2465
Despite numerous research efforts, there is no reliable and widely accepted tool for the prediction of erosion prone material surfaces due to collapse of cavitation bubbles. In the present paper an Erosion Aggressiveness Index (EAI) is proposed, based on the pressure loads which develop on the material surface and the material yield stress. EAI depends on parameters of the liquid quality and includes the fourth power of the maximum bubble radius and the bubble size number density distribution. Both the newly proposed EAI and the Cavitation Aggressiveness Index (CAI), which has been previously proposed by the authors based on the total derivative of pressure at locations of bubble collapse (DP/Dt>0, Dα/Dt<0), are computed for a cavitating flow orifice, for which experimental and numerical results on material erosion have been published. The predicted surface area prone to cavitation damage, as shown by the CAI and EAI indexes, is correlated with the experiments.
Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
Journal Article

Methods and Tools for Calculating the Flexibility of Automotive HW/SW Architectures

2012-04-16
2012-01-0005
To cope with the increasing number of advanced features (e.g., smart-phone integration and side-blind zone alert.) being deployed in vehicles, automotive manufacturers are designing flexible hardware architectures which can accommodate increasing feature content with as fewer as possible hardware changes so as to keep future costs down. In this paper, we propose a formal and quantitative definition of flexibility, a related methodology and a tool flow aimed at maximizing the flexibility of an automotive hardware architecture with respect to the features that are of greater importance to the designer. We define flexibility as the ability of an architecture to accommodate future changes in features with no changes in hardware (no addition/replacement of processors, buses, or memories). We utilize an optimization framework based on mixed integer linear programming (MILP) which computes the flexibility of the architecture while guaranteeing performance and safety requirements.
Technical Paper

HELS Based Acoustic Holographic Measurements to Evaluate Structure-Borne Noise

2007-05-15
2007-01-2281
General Motors (GM) recently purchased an acoustic holography system based on the Helmholtz Equation Least Squares (HELS) methodology. Typically acoustic holography has utilized planar transformation of the Fourier acoustic equations. General Motors conducted a variety of experiments on a simple well understood structure. This enabled us to understand the setup parameters and confirm the manufacturer's claims for accuracy. Measurements on the structure were taken using the HELS based equipment and a laser vibrometer. Conclusions are drawn on how to set up the equipment for future testing on vehicles.
Technical Paper

Understanding the Kalman/Vold-Kalman Order Tracking Filters' Formulation and Behavior

2007-05-15
2007-01-2221
The Kalman and Vold-Kalman order tracking filters have been implemented in commercial software since the early 90's. There are several mathematical formulations of filters that have been implemented by different software vendors. However, there have not been any papers that have been published which sufficiently explain the math behind these filters and discuss the actual implementations of the filters in software. In addition, upon generating the equations represented by these filters, solving the equations for datasets in excess of several hundred thousand datapoints is not trivial and has not been discussed in the literature. The papers which have attempted to cover these topics are generally vague and overly mathematically eloquent but not easily understandable by a practicing engineer.
Technical Paper

Modeling of Multicomponent Fuels Using Continuous Distributions with Application to Droplet Evaporation and Sprays

1997-10-01
972882
In multidimensional modeling, fuels have been represented predominantly by single components, such as octane for gasoline. Several bicomponent studies have been performed, but these are still limited in their ability to represent real fuels, which are blends of as many as 300 components. This study outlines a method by which the fuel composition is represented by a distribution function of the fuel molecular weight. This allows a much wider range of compositions to be modeled, and only requires including two additional “species” besides the fuel, namely the mean and second moment of the distribution. This approach has been previously presented but is applied here to multidimensional calculations. Results are presented for single component droplet vaporization for comparison with single component fuel predictions, as well as results for a multicomponent gasoline and a diesel droplet.
Technical Paper

The Effects of Mixture Stratification on Combustion in a Constant-Volume Combustion Vessel

1998-02-01
980159
The role of mixture stratification on combustion rate has been investigated in a constant volume combustion vessel in which mixtures of different equivalence ratios can be added in a spatially and temporally controlled fashion. The experiments were performed in a regime of low fluid motion to avoid the complicating effects of turbulence generated by the injection of different masses of fluid. Different mixture combinations were investigated while maintaining a constant overall equivalence ratio and initial pressure. The results indicate that the highest combustion rate for an overall lean mixture is obtained when all of the fuel is contained in a stoichiometric mixture in the vicinity of the ignition source. This is the result of the high burning velocity of these mixtures, and the complete oxidation which releases the full chemical energy.
Technical Paper

High Performance Biodegradable Fluid Requirements for Mobile Hydraulic Systems

1998-04-08
981518
Technical groups worldwide have been actively developing specifications and requirements for biodegradable hydraulic fluids for mobile applications. These groups have recognized that an industry-wide specification is necessary due to the increase in environmental awareness in the agriculture, construction, forestry, and mining industries, and to the increasing number of local regulations primarily throughout Europe. Caterpillar has responded to this need by publishing a requirement, Caterpillar BF-1, that may be used by Caterpillar dealers, customers, and industry to help select high-performance biodegradable hydraulic fluids. This requirement was written with the input of several organizations that are known to be involved with the development of similar types of specifications and requirements.
Technical Paper

Measurement of Diesel Spray Impingement and Fuel Film Characteristics Using Refractive Index Matching Method

2007-04-16
2007-01-0485
The fuel film thickness resulting from diesel fuel spray impingement was measured in a chamber at conditions representative of early injection timings used for low temperature diesel combustion. The adhered fuel volume and the radial distribution of the film thickness are presented. Fuel was injected normal to the impingement surface at ambient temperatures of 353 K, 426 K and 500 K, with densities of 10 kg/m3 and 25 kg/m3. Two injectors, with nozzle diameters of 100 μm and 120 μm, were investigated. The results show that the fuel film volume was strongly affected by the ambient temperature, but was minimally affected by the ambient density. The peak fuel film thickness and the film radius were found to increase with decreased temperature. The fuel film was found to be circular in shape, with an inner region of nearly constant thickness. The major difference observed with temperature was a decrease in the radial extent of the film.
Technical Paper

Determination of Source Contribution in Snowmobile Pass-by Noise Testing

2009-05-19
2009-01-2228
As noise concerns for snowmobiles become of greater interest for governing bodies, standards such as SAE J192 are implemented for regulation. Specific to this pass-by noise standard, and unlike many other pass-by tests, multiple non-standardized test surfaces are allowed to be used. Manufacturers must understand how the machines behave during these tests to know how to best improve the measured noise levels. Data is presented that identifies the contributions of different sources for different snowmobiles on various test surface conditions. Adaptive resampling for Doppler removal, frequency response functions and order tracking methods are implemented in order to best understand what components affect the overall measurement during the pass-by noise test.
Technical Paper

Momentum Coupling by Means of Lagrange Polynomials in the CFD Simulation of High-Velocity Dense Sprays

2004-03-08
2004-01-0535
The discrete droplet model is widely used to describe two-phase flows such as high-velocity dense sprays. The interaction between the liquid and the gas phase is modeled via appropriate source terms in the gas phase equations. This approach can lead to a strong dependence of the liquid-gas coupling on the spatial resolution of the gas phase. The liquid-gas coupling requires the computation of source terms using the gas phase properties, and, subsequently, these sources are then distributed onto the gas phase mesh. In this study, a Lagrange polynomial interpolation method has been developed to evaluate the source terms and also to distribute these source terms onto the gas mesh. The focus of this investigation has been on the momentum exchange between the two phases. The Lagrange polynomial interpolation and source term distribution methods are evaluated for non-evaporating sprays using KIVA3 as a modeling platform.
Technical Paper

Life Cycle Inventory Study of the UltraLight Steel Auto Body - Advanced Vehicle Concepts Vehicle Product System

2003-10-27
2003-01-2838
A life cycle inventory (LCI) study evaluates the environmental performance of the ULSAB-AVC (UltraLight Steel Auto Body - Advanced Vehicle Concepts) vehicle product system. The LCI quantifies the inputs and outputs of each life cycle stage of the ULSAB-AVC PNGV-gas engine vehicle (998 kg) over the 193,000 km service lifetime of the vehicle. The use phase of the ULSAB-AVC PNGV-diesel engine variant (1031 kg) is also quantified. The data categories measured for each life cycle phase include resource and energy consumption, air and water pollutant emissions, and solid waste production. The ULSAB-AVC LCI study is based on the methods, model and data from the 1999 study by the United States Automotive Materials Partnership (USAMP), a consortium within the United States Council for Automotive Research. This model was modified to represent the ULSAB-AVC PNGV-gas engine vehicle for each life cycle phase as well as the use phase of the PNGV-diesel engine variant.
Technical Paper

Lean-NOx and Plasma Catalysis Over γ-Alumina for Heavy Duty Diesel Applications

2001-09-24
2001-01-3569
The NOx reduction performance under lean conditions over γ-alumina was evaluated using a micro-reactor system and a non-thermal plasma-equipped bench test system. Various alumina samples were obtained from alumina manufacturers to assess commercial alumina materials. In addition, γ-alumina samples were synthesized at Caterpillar with a sol-gel technique in order to control alumina properties. The deNOx performances of the alumina samples were compared. The alumina samples were characterized with analytical techniques such as inductively coupled plasma (ICP) emission spectroscopy, temperature programmed desorption (TPD) and surface area measurements (BET) to understand physical and chemical properties. The information derived from these techniques was correlated with the NOx reduction performance to identify key parameters of γ-alumina for optimizing materials for lean-NOx and plasma assisted catalysis.
Technical Paper

Evaporating Spray Concentration Measurementsfrom Small and Medium Bore Diesel Injectors

2002-03-04
2002-01-0219
Vapor concentration measurements were performed for two unit injectors typically found in small- and medium-bore applications under evaporating conditions similar to those experienced in Diesel engines. Ambient gas temperatures of 800 and 1000 K and an ambient density of 15 kg/m3 were investigated using a constant volume combustion-type spray chamber. The exciplex laserinduced fluorescence technique with TMPD/naphthalene doped into the fuel was used to quantitatively determine the vapor-phase concentration and liquid-phase extent. The vapor-phase concentration was quantified using a previously developed method that includes corrections for the temperature dependence of the TMPD fluorescence, laser sheet absorption, and the laser sheet intensity profile. The effect of increasing ambient temperature (1000 vs. 800 K) was significant on intact liquid length, and on the spray-spreading angle in the early portion of the injection period.
Technical Paper

Results of Applying a Families-of-Systems Approach to Systems Engineering of Product Line Families

2002-11-18
2002-01-3086
Most of the history of systems engineering has been focused on processes for engineering a single complex system. However, most large enterprises design, manufacture, operate, sell, or support not one product but multiple product lines of related but varying systems. They seek to optimize time to market, costs of development and production, leverage of intellectual assets, best use of talented human resources, overall competitiveness, overall profitability and productivity. Optimizing globally across multiple product lines does not follow from treating each system family member as an independently engineered system or product. Traditional systems engineering principles can be generalized to apply to families. This article includes a multi-year case study of the actual use of a generic model-based systems engineering methodology for families, Systematica™, across the embedded electronic systems products of one of the world's largest manufacturers of heavy equipment.
Technical Paper

The Use of in Vehicle STL Testing to Correlate Subsystem Level SEA Models

2003-05-05
2003-01-1564
For the assessment of vehicle acoustics in the early design stages of a vehicle program, the use of full vehicle SEA models is becoming the standard analysis method in the US automotive industry. One benefit is that OEM's and Tier 1 suppliers are able to cascade lower level acoustic performance targets for NVH systems and components. Detailed SEA system level models can be used to assess the performance of systems such as dash panels, floors and doors, however, the results will be questionable until test data Is available. Correlation can be accomplished with buck testing, which is a common practice in the automotive industry for assessing the STL (sound transmission loss) of vehicle level components. The opportunity to conduct buck testing can be limited by the availability of representative bodies to be cut into bucks and the availability of a transmission loss suite with a suitably large opening.
Technical Paper

Development of a Luxury Vehicle Acoustic Package using SEA Full Vehicle Model

2003-05-05
2003-01-1554
Interior noise has become a significant performance attribute in modern passenger vehicles and this is extremely important in the luxury market segment where a quiet interior is the price of entry. With the elimination of early prototype vehicles to reduce development costs, high frequency analytical SEA models are used to design the vehicle sound package to meet targets for interior noise quality. This function is important before representative NVH prototypes are available, and later to support parameter variation investigations that would be cost prohibitive in a hardware test. This paper presents the application of an analytical full vehicle SEA model for the development of the acoustic package of a cross over luxury utility vehicle. The development concerns addressed were airborne powertrain noise and road noise. Power flow analysis was used to identify the major noise paths to the interior of the vehicle.
Technical Paper

Effect of Injection Timing on Detailed Chemical Composition and Particulate Size Distributions of Diesel Exhaust

2003-05-19
2003-01-1794
An experimental study was carried out to investigate the effects of fuel injection timing on detailed chemical composition and size distributions of diesel particulate matter (PM) and regulated gaseous emissions in a modern heavy-duty D.I. diesel engine. These measurements were made for two different diesel fuels: No. 2 diesel (Fuel A) and ultra low sulfur diesel (Fuel B). A single-cylinder 2.3-liter D.I. diesel engine equipped with an electronically controlled unit injection system was used in the experiments. PM measurements were made with an enhanced full-dilution tunnel system at the Engine Research Center (ERC) of the University of Wisconsin-Madison (UW-Madison) [1, 2]. The engine was run under 2 selected modes (25% and 75% loads at 1200 rpm) of the California Air Resources Board (CARB) 8-mode test cycle.
X