Refine Your Search

Topic

Author

Search Results

Journal Article

Maneuver-Based Analysis of Starting-Systems and Starting-Strategies for the Internal Combustion Engine in Full Hybrid Electric Vehicles

2014-10-13
2014-01-2901
The requirement of the start of the internal combustion engine (ICE) not only at vehicle standstill is new for full hybrid electric vehicles in comparison to conventional vehicles. However, the customer will not accept any deterioration with respect to dynamics and comfort. ICE-starting-systems and -strategies have to be designed to meet those demands. Within this research, a method was developed which allows a reproducible maneuver-based analysis of ICE-starts. In the first step, a maneuver catalogue including a customer-oriented maneuver program with appropriate analysis criteria was defined. Afterwards, the maneuvers were implemented and verified in a special test bench environment. Based on the method, two sample hybrid vehicles were benchmarked according to the maneuver catalogue. The benchmarking results demonstrate important dependencies between the criteria-based assessment of ICE-starts and the embedded ICE-starting-system and -strategy.
Technical Paper

Effect of Battery Temperature on Fuel Economy and Battery Aging When Using the Equivalent Consumption Minimization Strategy for Hybrid Electric Vehicles

2020-04-14
2020-01-1188
Battery temperature variations have a strong effect on both battery aging and battery performance. Significant temperature variations will lead to different battery behaviors. This influences the performance of the Hybrid Electric Vehicle (HEV) energy management strategies. This paper investigates how variations in battery temperature will affect Lithium-ion battery aging and fuel economy of a HEV. The investigated energy management strategy used in this paper is the Equivalent Consumption Minimization Strategy (ECMS) which is a well-known energy management strategy for HEVs. The studied vehicle is a Honda Civic Hybrid and the studied battery, a BLS LiFePO4 3.2Volts 100Ah Electric Vehicle battery cell. Vehicle simulations were done with a validated vehicle model using multiple combinations of highway and city drive cycles. The battery temperature variation is studied with regards to outside air temperature.
Journal Article

Analysis and Control of a Torque Blended Hybrid Electric Powertrain with a Multi-Mode LTC-SI Engine

2017-03-28
2017-01-1153
Low Temperature Combustion (LTC) engines are promising to improve powertrain fuel economy and reduce NOx and soot emissions by improving the in-cylinder combustion process. However, the narrow operating range of LTC engines limits the use of these engines in conventional powertrains. The engine’s limited operating range can be improved by taking advantage of electrification in the powertrain. In this study, a multi-mode LTC-SI engine is integrated with a parallel hybrid electric configuration, where the engine operation modes include Homogeneous Charge Compression Ignition (HCCI), Reactivity Controlled Compression Ignition (RCCI), and conventional Spark Ignition (SI). The powertrain controller is designed to enable switching among different modes, with minimum fuel penalty for transient engine operations.
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Technical Paper

Utilization of Vehicle Connectivity for Improved Energy Consumption of a Speed Harmonized Cohort of Vehicles

2020-04-14
2020-01-0587
Improving vehicle response through advanced knowledge of traffic behavior can lead to large improvements in energy consumption for the single isolated vehicle. This energy savings across multiple vehicles can even be larger if they travel together as a cohort in harmonization. Additionally, if the vehicles have enough information about their immediate path of travel, and other vehicles’ in that path (and their respective critical forward-looking information), they can safely drive close enough to each other to share aerodynamic load. These energy savings can be upwards of multiple percentage points, and are dependent on several criteria. This analysis looks at criteria that contributes to energy savings for a cohort of vehicles in synchronous motion, as well as describes a study that allows for better understanding of the potential benefits of different types of cohorted vehicles in different platoon arrangements.
Journal Article

Model-Based Estimation and Control System Development in a Urea-SCR Aftertreatment System

2008-04-14
2008-01-1324
In this paper, a model-based linear estimator and a non-linear control law for an Fe-zeolite urea-selective catalytic reduction (SCR) catalyst for heavy duty diesel engine applications is presented. The novel aspect of this work is that the relevant species, NO, NO2 and NH3 are estimated and controlled independently. The ability to target NH3 slip is important not only to minimize urea consumption, but also to reduce this unregulated emission. Being able to discriminate between NO and NO2 is important for two reasons. First, recent Fe-zeolite catalyst studies suggest that NOx reduction is highly favored by the NO 2 based reactions. Second, NO2 is more toxic than NO to both the environment and human health. The estimator and control law are based on a 4-state model of the urea-SCR plant. A linearized version of the model is used for state estimation while the full nonlinear model is used for control design.
Journal Article

The Model Integration and Hardware-in-the-Loop (HiL) Simulation Design for the Analysis of a Power-Split Hybrid Electric Vehicle with Electrochemical Battery Model

2017-03-28
2017-01-0001
This paper studies the hardware-in-the-loop (HiL) design of a power-split hybrid electric vehicle (HEV) for the research of HEV lithiumion battery aging. In this paper, an electrochemical model of a lithium-ion battery pack with the characteristics of battery aging is built and integrated into the vehicle model of Autonomie® software from Argonne National Laboratory. The vehicle model, together with the electrochemical battery model, is designed to run in a dSPACE real-time simulator while the powertrain power distribution is managed by a dSPACE MicroAutoBoxII hardware controller. The control interface is designed using dSPACE ControlDesk to monitor the real-time simulation results. The HiL simulation results with the performance of vehicle dynamics and the thermal aging of the battery are presented and analyzed.
Technical Paper

A Connected Controls and Optimization System for Vehicle Dynamics and Powertrain Operation on a Light-Duty Plug-In Multi-Mode Hybrid Electric Vehicle

2020-04-14
2020-01-0591
This paper presents an overview of the connected controls and optimization system for vehicle dynamics and powertrain operation on a light-duty plug-in multi-mode hybrid electric vehicle developed as part of the DOE ARPA-E NEXTCAR program by Michigan Technological University in partnership with General Motors Co. The objective is to enable a 20% reduction in overall energy consumption and a 6% increase in electric vehicle range of a plug-in hybrid electric vehicle through the utilization of connected and automated vehicle technologies. Technologies developed to achieve this goal were developed in two categories, the vehicle control level and the powertrain control level. Tools at the vehicle control level include Eco Routing, Speed Harmonization, Eco Approach and Departure and in-situ vehicle parameter characterization.
Journal Article

Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies

2011-04-12
2011-01-1136
It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil-derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts. The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter.
Journal Article

Scuffing Test Rig for Piston Wrist Pin and Pin Bore

2015-04-14
2015-01-0680
In practice, the piston wrist pin is either fixed to the connecting rod or floats between the connecting rod and the piston. The tribological behavior of fixed wrist pins have been studied by several researchers, however there have been few studies done on the floating wrist pin. A new bench rig has been designed and constructed to investigate the tribological behavior between floating pins and pin bore bearings. The experiments were run using both fixed pins and floating pins under the same working conditions. It was found that for fixed pins there was severe damage on the pin bore in a very short time (5 minutes) and material transfer occurs between the wrist pin and pin bore; however, for the floating pin, even after a long testing time (60 minutes) there was minimal surface damage on either the pin bore or wrist pin.
Technical Paper

Radio Usage: Observations from the 100-Car Naturalistic Driving Study

2007-04-16
2007-01-0441
This paper discusses radio usage habits observed during analysis of 700 hours of video sampled from the 100-Car Naturalistic Driving Study database. Analysts used large-scale printouts of each vehicle's radio faceplate and recorded interactions based on video analysis of hand movement and location (without the assistance of audio recordings). The duration and specific manipulations or adjustments were recorded for each interaction. The results summarize the length and type of interactions, most often-used controls, and total percentage of time drivers interacted with the radio.
Technical Paper

A Response Surface Based Tool for Evaluating Vehicle Performance in the Pedestrian Leg Impact Test

2008-04-14
2008-01-1244
An interactive tool for predicting the performance of vehicle designs in the pedestrian leg impact test has been developed. This tool allows users to modify the design of a vehicle front structure through the use of a graphical interface, and then evaluates the performance of the design with a response surface. This performance is displayed in the graphical interface, providing the user with nearly instantaneous feedback to his design changes. An example is shown that demonstrates how the tool can be used to help guide the user towards vehicle designs that are likely to improve performance. As part of the development of this tool, a simplified, parametric finite element model of the front structure of the vehicle was created. This vehicle model included eleven parameters that could be adjusted to change the structural dimensions and structural behavior of the model.
Technical Paper

Adequacy of Reduced Order Models for Model-Based Control in a Urea-SCR Aftertreatment System

2008-04-14
2008-01-0617
Model-based control strategies are important for meeting the dual objective of maximizing NOx reduction and minimizing NH3 slip in urea-SCR catalysts. To be implementable on the vehicle, the models should capture the essential behavior of the system, while not being computationally intensive. This paper discusses the adequacy of two different reduced order SCR catalyst models and compares their performance with a higher order model. The higher order model assumes that the catalyst has both diffusion and reaction kinetics, whereas the reduced order models contain only reaction kinetics. After describing each model, its parameter identification and model validation based on experiments on a Navistar I6 7.6L engine are presented. The adequacy of reduced order models is demonstrated by comparing the NO, NO2 and NH3 concentrations predicted by the models to their concentrations from the test data.
Technical Paper

The Impact of Hybrid-Electric Powertrains on Chassis Systems and Vehicle Dynamics

2009-04-20
2009-01-0442
While hybrid-electric powertrain features such as regenerative braking and electric driving can improve the fuel economy of a vehicle significantly, these features may also have a considerable impact on driving dynamics. That is why extra effort is necessary to ensure safety and comfort that customers usually expect from a conventional vehicle. The purpose of this paper is to initiate a discussion regarding different drivetrain concepts, necessary changes in chassis systems, and the impact on vehicle dynamics. To provide input to this essential discussion, braking and steering systems, as well as suspension design, are analyzed regarding their fit with hybrid systems. It is shown how an integration of hybrid technology and chassis systems benefits vehicle dynamics and why “by-wire” technology is a key enabler for safe and comfortable hybrid-electric vehicles.
Technical Paper

A Feasible CFD Methodology for Gasoline Intake Flow Optimization in a HEV Application - Part 2: Prediction and Optimization

2010-10-25
2010-01-2238
Today's engine and combustion process development is closely related to the intake port layout. Combustion, performance and emissions are coupled to the intensity of turbulence, the quality of mixture formation and the distribution of residual gas, all of which depend on the in-cylinder charge motion, which is mainly determined by the intake port and cylinder head design. Additionally, an increasing level of volumetric efficiency is demanded for a high power output. Most optimization efforts on typical homogeneous charge spark ignition (HCSI) engines have been at low loads because that is all that is required for a vehicle to make it through the FTP cycle. However, due to pumping losses, this is where such engines are least efficient, so it would be good to find strategies to allow the engine to operate at higher loads.
Technical Paper

Cold-Start and Warmup Driveability Performance of Hybrid Electric Vehicles Using Oxygenated Fuels

2003-10-27
2003-01-3196
Hybrid vehicles may respond to fuel variables in unique ways; they could even require a unique driveability test. The Coordinating Research Council (CRC) conducted a program to determine the effect of ethanol content on driveability performance under cool ambient conditions. In addition to the 27 vehicles in the main fleet, four hybrid electric vehicles (HEVs) were tested using the same fuels and driveability procedure. These HEVs responded to fuel in a manner similar to conventional vehicles; however, the HEVs showed unique driving characteristics not well captured in the existing test.
Technical Paper

Powersplit Hybrid Electric Vehicle Control with Electronic Throttle Control (ETC)

2003-10-27
2003-01-3280
This paper analyzes the control of the series-parallel powersplit used in the 2001 Michigan Tech FutureTruck. An electronic throttle controller is implemented and a new control algorithm is proposed and tested. A vehicle simulation has been created in MATLAB and the control algorithm implemented within the simulation. A program written in C has also been created that implements the control algorithm in the test vehicle. The results from both the simulation and test vehicle are presented and discussed and show a 15% increase in fuel economy. With the increase in fuel economy, and through the use of the original exhaust after treatment, lower emissions are also expected.
Technical Paper

Control Strategies for a Series-Parallel Hybrid Electric Vehicle

2001-03-05
2001-01-1354
Living in the era of rising environmental sensibility and increasing gasoline prices, the development of a new environmentally friendly generation of vehicles becomes a necessity. Hybrid electric vehicles are one means of increasing propulsion system efficiency and decreasing pollutant emissions. In this paper, the series-parallel power-split configuration for Michigan Technological University's FutureTruck is analyzed. Mathematical equations that describe the hybrid power-split transmission are derived. The vehicle's differential equations of motion are developed and the system's need for a controller is shown. The engine's brake power and brake specific fuel consumption, as a function of its speed and throttle position, are experimentally determined. A control strategy is proposed to achieve fuel efficient engine operation. The developed control strategy has been implemented in a vehicle simulation and in the test vehicle.
Technical Paper

Target Detection Distances and Driver Performance with Swiveling HID Headlamps

2004-05-10
2004-01-2258
Twent-two participants of varying ages detected roadside targets in two consecutive dynamic evaluations of a horizontally swiveling headlamp vehicle and a vehicle with the same headlamps that did not swivel. Participants detected targets as they drove unlighted low-speed public roads. Scenarios encountered were intersection turns, and curves with approximate radii of 70-90m, 120-140m, 170-190m, and 215-220m. Results from the first study found improved detection distances from the swiveling headlamps in left curves, but unexpectedly decreased detection distances in larger radius right hand curves. The swiveling algorithm was altered for the second study, and the headlamps used did not have the same beam pattern as in the first study. Results from the second study again found improved detection distances from the swiveling headlamps while in the larger radius right hand curves fixed and swivel were not statistically different.
Technical Paper

Simulation and Identification of the Neck Muscle Activities During Head and Neck Flexion Whiplash

2002-03-04
2002-01-0017
A previously developed finite element human head/cervical spine model was further enhanced to include the major muscles in the neck. The head/cervical spine model consists of the skull, C1-C7, disks, facets, and all the ligaments in this region. The vertebral bodies are simulated by deformable bodies and the soft tissues in the cervical spine are modeled by nonlinear anisotropic viscoelastic material. The motion segments in the cervical spine model were validated against three-dimensional cadaver test data reported in the literature. To simulate the passive and active muscle properties, the classical Hill muscle model was implemented in the LS-DYNA code and model parameters were based on measurements of cadaver neck musculature. The head/neck model was used to simulate a human volunteer flexion whiplash test reported in the literature. Simulation results showed that the neck muscle contraction and relaxation activities had a significant effect on the head/neck motion.
X