Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

New Developments in Diesel Oxidation Catalysts

2008-10-07
2008-01-2638
A number of oxidation catalysts have been prepared using different types of advanced support materials such as ceria-zirconia, silica-titania, spinels and perovskites. Active metals such as Pd and Au-Pd were loaded by conventional impregnation techniques and/or deposition-precipitation methods. A liquid hydrocarbon delivery system was designed and implemented for the catalyst test benches in order to simulate the diesel engine exhaust environment. The activity of fresh (no degreening) catalysts was evaluated with traditional CO and light hydrocarbons (C2H4, C3H6) as well as with heavy hydrocarbons such as C10 H22.
Technical Paper

Preparation and Characterization of Nanophase Gold Catalysts for Emissions Control

2008-10-07
2008-01-2639
Various gold catalysts were prepared using commercial and in-house fabricated advanced catalyst supports that included mesoporous silica, mesoporous alumina, sol-gel alumina, and transition metal oxides. Gold nanoparticles were loaded on the supports by co-precipitation, deposition-precipitation, ion exchange and surface functionalization techniques. The average gold particle size was ∼20nm or less. The oxidation activity of the prepared catalysts was studied using carbon monoxide and light hydrocarbons (ethylene, propylene and propane) in presence of water and CO2 and the results are presented.
Technical Paper

Sulfur Management of NOx Adsorber Technology for Diesel Light-duty Vehicle and Truck Applications

2003-10-27
2003-01-3245
Sulfur poisoning from engine fuel and lube is one of the most recognizable degradation mechanisms of a NOx adsorber catalyst system for diesel emission reduction. Even with the availability of 15 ppm sulfur diesel fuel, NOx adsorber will be deactivated without an effective sulfur management. Two general pathways are currently being explored for sulfur management: (1) the use of a disposable SOx trap that can be replaced or rejuvenated offline periodically, and (2) the use of diesel fuel injection in the exhaust and high temperature de-sulfation approach to remove the sulfur poisons to recover the NOx trapping efficiency. The major concern of the de-sulfation process is the many prolonged high temperature rich cycles that catalyst will encounter during its useful life. It is shown that NOx adsorber catalyst suffers some loss of its trapping capacity upon high temperature lean-rich exposure.
Technical Paper

The Impact of Fuel Injection Strategies and Compression Ratio on Combustion and Performance of a Heavy-Duty Gasoline Compression Ignition Engine

2022-08-30
2022-01-1055
Gasoline compression ignition using a single gasoline-type fuel has been shown as a method to achieve low-temperature combustion with low engine-out NOx and soot emissions and high indicated thermal efficiency. However, key technical barriers to achieving low temperature combustion on multi-cylinder engines include the air handling system (limited amount of exhaust gas recirculation) as well as mechanical engine limitations (e.g. peak pressure rise rate). In light of these limitations, high temperature combustion with reduced amounts of exhaust gas recirculation appears more practical. Furthermore, for high temperature Gasoline compression ignition, an effective aftertreatment system allows high thermal efficiency with low tailpipe-out emissions. In this work, experimental testing was conducted on a 12.4 L multi-cylinder heavy-duty diesel engine operating with high temperature gasoline compression ignition combustion using EEE gasoline.
Technical Paper

Developing Diesel Engines to Meet Ultra-low Emission Standards

2005-11-01
2005-01-3628
The modern diesel engine is used around the world to power applications as diverse as passenger cars, heavy-duty trucks, electrical power generators, ships, locomotives, agricultural and industrial equipment. The success of the diesel engine results from its unique combination of fuel economy, durability, reliability and affordability - which drive the lowest total cost of ownership. The diesel engine has been developed to meet the most demanding on-highway emission standards, through the introduction of advanced technologies such as: electronic controls, high pressure fuel injection, and cooled exhaust gas recirculation. The standards to be introduced in the U.S. in 2007 will see the introduction of the Clean Diesel which will achieve near-zero NOx and particulate emissions, while retaining the customer values outlined above.
Technical Paper

Optimizing Thermal Efficiency of a Multi-Cylinder Heavy Duty Engine with E85 Gasoline Compression Ignition

2019-04-02
2019-01-0557
Gasoline compression ignition (GCI) using a single gasoline-type fuel for direct/port injection has been shown as a method to achieve low-temperature combustion with low engine-out NOx and soot emissions and high indicated thermal efficiency. However, key technical barriers to achieving low temperature combustion on multi-cylinder engines include the air handling system (limited amount of exhaust gas recirculation (EGR)) as well as mechanical engine limitations (e.g. peak pressure rise rate). In light of these limitations, high temperature combustion with reduced amounts of EGR appears more practical. Previous studies with 93 AKI gasoline demonstrated that the port and direct injection strategy exhibited the best performance, but the premature combustion event prevented further increase in the premixed gasoline fraction and efficiency.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - AFR and EGR Dilution Effects

2015-09-29
2015-01-2808
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost compared to diesel fuel has heightened interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and reduce harmful emissions while maintaining durability. Transforming part of the vehicle fleet to NG is a path to reduce dependence on crude oil. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for MD and HD engines with widespread use in the US and Europe. But this technology exhibits poor cycle efficiency and is load limited due to knock phenomenon. Direct Injection of NG during the compression stroke promises to deliver improved thermal efficiency by avoiding excessive premixing and extending the lean limits which helps to extend the knock limit.
Journal Article

Model-Based Approaches in Developing an Advanced Aftertreatment System: An Overview

2019-01-15
2019-01-0026
Cummins has recently launched next-generation aftertreatment technology, the Single ModuleTM aftertreatment system, for medium-duty and heavy-duty engines used in on-highway and off-highway applications. Besides meeting EPA 2010+ and Euro VI regulations, the Single ModuleTM aftertreatment system offers 60% volume and 40% weight reductions compared to current aftertreatment systems. In this work, we present model-based approaches that were systematically adopted in the design and development of the Cummins Single ModuleTM aftertreatment system. Particularly, a variety of analytical and experimental component-level and system-level validation tools have been used to optimize DOC, DPF, SCR/ASC, as well as the DEF decomposition device.
X