Refine Your Search

Topic

Author

Search Results

Journal Article

The Big Data Application Strategy for Cost Reduction in Automotive Industry

2014-09-30
2014-01-2410
Cost reduction in the automotive industry becomes a widely-adopted operational strategy not only for Original Equipment Manufacturers (OEMs) that take cost leader generic corporation strategy, but also for many OEMs that take differentiation generic corporation strategy. Since differentiation generic strategy requires an organization to provide a product or service above the industry average level, a premium is typically included in the tag price for those products or services. Cost reduction measures could increase risks for the organizations that pursue differentiation strategy. Although manufacturers in the automotive industry dramatically improved production efficiency in past ten years, they are still facing the pressure of cost control. The big challenge in cost control for automakers and suppliers is increasing prices of raw materials, energy and labor costs. These costs create constraints for the traditional economic expansion model.
Technical Paper

Alleviating the Magnetic Effects on Magnetometers Using Vehicle Kinematics for Yaw Estimation for Autonomous Ground Vehicles

2020-04-14
2020-01-1025
Autonomous vehicle operation is dependent upon accurate position estimation and thus a major concern of implementing the autonomous navigation is obtaining robust and accurate data from sensors. This is especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU consists of a 3-axis gyro, 3-axis accelerometer, and 3-axis magnetometer. The IMU provides vehicle orientation in 3D space in terms of yaw, roll and pitch. Out of which, yaw is a major parameter to control the ground vehicle’s lateral position during navigation. The accelerometer is responsible for attitude (roll-pitch) estimates and magnetometer is responsible for yaw estimates. However, the magnetometer is prone to environmental magnetic disturbances which induce errors in the measurement.
Technical Paper

Evaluation of Electro-acoustic Techniques for In-Situ Measurement of Acoustic Absorption Coefficient of Grass and Artificial Turf Surfaces

2007-05-15
2007-01-2225
The classical methods of measuring acoustic absorption coefficient using an impedance tube and a reverberation chamber are well established [1, 2]. However, these methods are not suitable for in-situ applications. The two in-situ methods; single channel microphone (P- probe) and dual channel acoustic pressure and particle velocity (Pu-probe) methods based on measurement of impulse response functions of the material surface under test, provide considerable advantage in data acquisition, signal processing, ease and mobility of measurement setup. This paper evaluates the measurement techniques of these two in-situ methods and provides results of acoustic absorption coefficient of a commercial artificial Astroturf, a Dow quash material, and a grass surface.
Technical Paper

Implementation of the Time Variant Discrete Fourier Transform as a Real-Time Order Tracking Method

2007-05-15
2007-01-2213
The Time Variant Discrete Fourier Transform was implemented as a real-time order tracking method using developed software and commercially available hardware. The time variant discrete Fourier transform (TVDFT) with the application of the orthogonality compensation matrix allows multiple tachometers to be tracked with close and/or crossing orders to be separated in real-time. Signal generators were used to create controlled experimental data sets to simulate tachometers and response channels. Computation timing was evaluated for the data collection procedure and each of the data processing steps to determine how each part of the process affects overall performance. Many difficulties are associated with a real-time data collection and analysis tool and it becomes apparent that an understanding of each component in the system is required to determine where time consuming computation is located.
Technical Paper

Electronic Control Module Network and Data Link Development and Validation using Hardware in the Loop Systems

2009-10-06
2009-01-2840
Increasingly, the exchanges of data in complex ECM (Electronic Control Module) systems rely on multiple communication networks across various physical and network layers. This has greatly increased system flexibility and provided an excellent medium to create well-defined exchangeable interfaces between components; however this added flexibility comes with increased network complexity. A system-level approach allows for the optimization of data exchange and network configuration as well as the development of a comprehensive network failure strategy. Many current ECM systems utilize complex multi-network communication strategies to exchange and control data to components. Recently, Caterpillar implemented an HIL (Hardware-In-the-Loop) test system that provides an approach for developing and testing a comprehensive ECM network strategy.
Technical Paper

Pulse Thermography for Inspecting Automotive Components and Materials

2010-04-12
2010-01-0959
The presented manuscript discusses the implementation of the pulsed-thermography technique for the non-intrusive evaluation of automotive parts. The study discusses the fundamentals of static and dynamic thermography through examples and case studies. Furthermore, the proposed pulse thermography system is analyzed in terms of hardware calibration i.e. pulse duration and intensity and the detector effect on the time and the spatial resolutions. Current thermography processing codes and techniques are also described and critiqued, with new processing subroutines proposed; one based on self-referencing thersholding. Additionally, new trends in infrared and visible sensors fusion are presented.
Technical Paper

Turbulence Intensity Calculation from Cylinder Pressure Data in a High Degree of Freedom Spark-Ignition Engine

2010-04-12
2010-01-0175
The number of control actuators available on spark-ignition engines is rapidly increasing to meet demand for improved fuel economy and reduced exhaust emissions. The added complexity greatly complicates control strategy development because there can be a wide range of potential actuator settings at each engine operating condition, and map-based actuator calibration becomes challenging as the number of control degrees of freedom expand significantly. Many engine actuators, such as variable valve actuation and flow control valves, directly influence in-cylinder combustion through changes in gas exchange, mixture preparation, and charge motion. The addition of these types of actuators makes it difficult to predict the influences of individual actuator positioning on in-cylinder combustion without substantial experimental complexity.
Technical Paper

Modeling of Human Response From Vehicle Performance Characteristics Using Artificial Neural Networks

2002-05-07
2002-01-1570
This study investigates a methodology in which the general public's subjective interpretation of vehicle handling and performance can be predicted. Several vehicle handling measurements were acquired, and associated metrics calculated, in a controlled setting. Human evaluators were then asked to drive and evaluate each vehicle in a winter driving school setting. Using the acquired data, multiple linear regression and artificial neural network (ANN) techniques were used to create and refine mathematical models of human subjective responses. It is shown that artificial neural networks, which have been trained with the sets of objective and subjective data, are both more accurate and more robust than multiple linear regression models created from the same data.
Technical Paper

Lean-NOx and Plasma Catalysis Over γ-Alumina for Heavy Duty Diesel Applications

2001-09-24
2001-01-3569
The NOx reduction performance under lean conditions over γ-alumina was evaluated using a micro-reactor system and a non-thermal plasma-equipped bench test system. Various alumina samples were obtained from alumina manufacturers to assess commercial alumina materials. In addition, γ-alumina samples were synthesized at Caterpillar with a sol-gel technique in order to control alumina properties. The deNOx performances of the alumina samples were compared. The alumina samples were characterized with analytical techniques such as inductively coupled plasma (ICP) emission spectroscopy, temperature programmed desorption (TPD) and surface area measurements (BET) to understand physical and chemical properties. The information derived from these techniques was correlated with the NOx reduction performance to identify key parameters of γ-alumina for optimizing materials for lean-NOx and plasma assisted catalysis.
Technical Paper

Air Charge and Residual Gas Fraction Estimation for a Spark-Ignition Engine Using In-Cylinder Pressure

2017-03-28
2017-01-0527
An accurate estimation of cycle-by-cycle in-cylinder mass and the composition of the cylinder charge is required for spark-ignition engine transient control strategies to obtain required torque, Air-Fuel-Ratio (AFR) and meet engine pollution regulations. Mass Air Flow (MAF) and Manifold Absolute Pressure (MAP) sensors have been utilized in different control strategies to achieve these targets; however, these sensors have response delay in transients. As an alternative to air flow metering, in-cylinder pressure sensors can be utilized to directly measure cylinder pressure, based on which, the amount of air charge can be estimated without the requirement to model the dynamics of the manifold.
Technical Paper

An Experimental Study on the Interaction between Flow and Spark Plug Orientation on Ignition Energy and Duration for Different Electrode Designs

2017-03-28
2017-01-0672
The effect of flow direction towards the spark plug electrodes on ignition parameters is analyzed using an innovative spark aerodynamics fixture that enables adjustment of the spark plug gap orientation and plug axis tilt angle with respect to the incoming flow. The ignition was supplied by a long discharge high energy 110 mJ coil. The flow was supplied by compressed air and the spark was discharged into the flow at varying positions relative to the flow. The secondary ignition voltage and current were measured using a high speed (10MHz) data acquisition system, and the ignition-related metrics were calculated accordingly. Six different electrode designs were tested. These designs feature different positions of the electrode gap with respect to the flow and different shapes of the ground electrodes. The resulting ignition metrics were compared with respect to the spark plug ground strap orientation and plug axis tilt angle about the flow direction.
Technical Paper

Communication Requirements for Plug-In Electric Vehicles

2011-04-12
2011-01-0866
This paper is the second in the series of documents designed to record the progress of a series of SAE documents - SAE J2836™, J2847, J2931, & J2953 - within the Plug-In Electric Vehicle (PEV) Communication Task Force. This follows the initial paper number 2010-01-0837, and continues with the test and modeling of the various PLC types for utility programs described in J2836/1™ & J2847/1. This also extends the communication to an off-board charger, described in J2836/2™ & J2847/2 and includes reverse energy flow described in J2836/3™ and J2847/3. The initial versions of J2836/1™ and J2847/1 were published early 2010. J2847/1 has now been re-opened to include updates from comments from the National Institute of Standards Technology (NIST) Smart Grid Interoperability Panel (SGIP), Smart Grid Architectural Committee (SGAC) and Cyber Security Working Group committee (SCWG).
Technical Paper

A New Multi-point Active Drawbead Forming Die: Model Development for Process Optimization

1998-02-01
980076
A new press/die system for restraining force control has been developed in order to facilitate an increased level of process control in sheet metal forming. The press features a built-in system for controlling drawbead penetration in real time. The die has local force transducers built into the draw radius of the lower tooling. These sensors are designed to give process information useful for the drawbead control. This paper focuses on developing models of the drawbead actuators and the die shoulder sensors. The actuator model is useful for developing optimal control methods. The sensor characterization is necessary in order to develop a relationship between the raw sensor outputs and a definitive process characteristic such as drawbead restraining force (DBRF). Closed loop control of local specific punch force is demonstrated using the die shoulder sensor and a PID controller developed off-line with the actuator model.
Technical Paper

Adaptive Cycle Engines: Results with 2nd Generation Combustion Model

2022-03-29
2022-01-0421
A more accurate combustion model, based on Fluent simulations including the effect of flame stretching and extinction, has been added to cycle and road simulations of an Adaptive Cycle Engine (ACE), where compressions and expansions do not follow a predefined sequence. Also, engine speed data from the Argonne Downloadable Dynamometer Database is used in the road simulations in lieu of the original constant-speed model. Results show a drop in predicted steady-state brake efficiency and bmep around 15% relative to the model using a standard Wiebe function for heat release rate. Performance on road cycles is not greatly affected by the delayed combustion since the relationship between expansion mass and work is largely unchanged. Even with the refined model, future ACE-equipped vehicles are expected to be competitive with electric powertrains in pre-tax cost and overall emissions.
Technical Paper

Autonomous Vehicle Sensor Suite Data with Ground Truth Trajectories for Algorithm Development and Evaluation

2018-04-03
2018-01-0042
This paper describes a multi-sensor data set, suitable for testing algorithms to detect and track pedestrians and cyclists, with an autonomous vehicle’s sensor suite. The data set can be used to evaluate the benefit of fused sensing algorithms, and provides ground truth trajectories of pedestrians, cyclists, and other vehicles for objective evaluation of track accuracy. One of the principal bottlenecks for sensing and perception algorithm development is the ability to evaluate tracking algorithms against ground truth data. By ground truth we mean independent knowledge of the position, size, speed, heading, and class of objects of interest in complex operational environments. Our goal was to execute a data collection campaign at an urban test track in which trajectories of moving objects of interest are measured with auxiliary instrumentation, in conjunction with several autonomous vehicles (AV) with a full sensor suite of radar, lidar, and cameras.
Technical Paper

Post-Processing Analysis of Large Channel Count Order Track Tests and Estimation of Linearly Independent Operating Shapes

1999-05-17
1999-01-1827
Large channel count data acquisition systems have seen increasing use in the acquisition and analysis of rotating machinery, these systems have the ability to generate very large amounts of data for analysis. The most common operating measurement made on powertrains or automobiles on the road or on dynamometers has become the order track measurement. Order tracking analysis can generate a very large amount of information that must be analyzed, both due to the number of channels and orders tracked. Analysis methods to efficiently analyze large numbers of Frequency Response Function (FRF) measurements have been developed and used over the last 20 years in many troubleshooting applications. This paper develops applications for several FRF based analysis methods as applied for efficient analysis of large amounts of order track data.
Technical Paper

Computationally Efficient Reduced-Order Powertrain Model of a Multi-Mode Plug-In Hybrid Electric Vehicle for Connected and Automated Vehicles

2019-04-02
2019-01-1210
This paper presents the development of a reduced-order powertrain model for energy and SOC estimation of a multi-mode plug-in hybrid electric vehicle using only vehicle speed profile and route elevation as inputs. Such a model is intended to overcome the computational inefficiencies of higher fidelity powertrain and vehicle models in short and long horizon energy optimization efforts such as Coordinated Adaptive Cruise Control (CACC), Eco Approach and Departure (EcoAND), Eco Routing, and PHEV mode blending. The reduced-order powertrain model enables Connected and Automated Vehicles (CAVs) to utilize the onboard sensor and connected data to quickly react and plan their maneuvers to highly dynamic road conditions with minimal computational resources.
Technical Paper

Sensor Fusion Approach for Dynamic Torque Estimation with Low Cost Sensors for Boosted 4-Cylinder Engine

2021-04-06
2021-01-0418
As the world searches for ways to reduce humanity’s impact on the environment, the automotive industry looks to extend the viable use of the gasoline engine by improving efficiency. One way to improve engine efficiency is through more effective control. Torque-based control is critical in modern cars and trucks for traction control, stability control, advanced driver assistance systems, and autonomous vehicle systems. Closed loop torque-based engine control systems require feedback signal(s); indicated mean effective pressure (IMEP) is a useful signal but is costly to measure directly with in-cylinder pressure sensors. Previous work has been done in torque and IMEP estimation using crankshaft acceleration and ion sensors, but these systems lack accuracy in some operating ranges and the ability to estimate cycle-cycle variation.
Technical Paper

The Artificial Intelligence Application Strategy in Powertrain and Machine Control

2015-09-29
2015-01-2860
The application of Artificial Intelligence (AI) in the automotive industry can dramatically reshape the industry. In past decades, many Original Equipment Manufacturers (OEMs) applied neural network and pattern recognition technologies to powertrain calibration, emission prediction and virtual sensor development. The AI application is mostly focused on reducing product development and validation cost. AI technologies in these applications demonstrate certain cost-saving benefits, but are far from disruptive. A disruptive impact can be realized when AI applications finally bring cost-saving benefits directly to end users (e.g., automation of a vehicle or machine operation could dramatically improve the efficiency). However, there is still a gap between current technologies and those that can fully give a vehicle or machine intelligence, including reasoning, knowledge, planning and self-learning.
Technical Paper

Model Integration and Hardware-in-the-Loop (HiL) Simulation Design for the Testing of Electric Power Steering Controllers

2016-04-05
2016-01-0029
The Electronic Control Unit (ECU) of an Electric Power Steering (EPS) system is a core device to decide how much assistance an electric motor applies on a steering wheel. The EPS ECU plays an important role in EPS systems. The effectiveness of an ECU needs to be thoroughly tested before mass production. Hardware-in-the-loop simulation provides an efficient way for the development and testing of embedded controllers. This paper focuses on the development of a HiL system for testing EPS controllers. The hardware of the HiL system employs a dSPACE HiL simulator. The EPS plant model is an integrated model consisting of a Vehicle Dynamics model of the dSPACE Automotive Simulation Model (ASM) and the Nexteer Steering model. The paper presents the design of an EPS HiL system, the simulation of sensors and actuators, the functions of the ASM Vehicle Dynamics model, and the integration method of the ASM Vehicle Dynamics model with a Steering model.
X