Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions

2009-04-20
2009-01-1102
Premixed Charge Compression Ignition (PCCI), a Low Temperature Combustion (LTC) strategy for diesel engines is of increasing interest due to its potential to simultaneously reduce soot and NOx emissions. However, the influence of mixture preparation on combustion phasing and heat release rate in LTC is not fully understood. In the present study, the influence of injection timing on mixture preparation, combustion and emissions in PCCI mode is investigated by experimental and computational methods. A sequential coupling approach of 3D CFD with a Stochastic Reactor Model (SRM) is used to simulate the PCCI engine. The SRM accounts for detailed chemical kinetics, convective heat transfer and turbulent micro-mixing. In this integrated approach, the temperature-equivalence ratio statistics obtained using KIVA 3V are mapped onto the stochastic particle ensemble used in the SRM.
Journal Article

Reduction of Steady-State CFD HVAC Simulations into a Fully Transient Lumped Parameter Network

2014-05-10
2014-01-9121
Since transient vehicle HVAC computational fluids (CFD) simulations take too long to solve in a production environment, the goal of this project is to automatically create a lumped-parameter flow network from a steady-state CFD that solves nearly instantaneously. The data mining algorithm k-means is implemented to automatically discover flow features and form the network (a reduced order model). The lumped-parameter network is implemented in the commercial thermal solver MuSES to then run as a fully transient simulation. Using this network a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track localized temperatures near specific objects (such as equipment in vehicles).
Journal Article

The Visualization of Soot Late in the Diesel Combustion Process by Laser Induced Incandescence with a Vertical Laser Sheet

2015-04-14
2015-01-0801
Although soot-formation processes in diesel engines have been well characterized during the mixing-controlled burn, little is known about the distribution of soot throughout the combustion chamber after the end of appreciable heat release during the expansion and exhaust strokes. Hence, the laser-induced incandescence (LII) diagnostic was developed to visualize the distribution of soot within an optically accessible single-cylinder direct-injection diesel engine during this period. The developed LII diagnostic is semi-quantitative; i.e., if certain conditions (listed in the Appendix) are true, it accurately captures spatial and temporal trends in the in-cylinder soot field. The diagnostic features a vertically oriented and vertically propagating laser sheet that can be translated across the combustion chamber, where “vertical” refers to a direction parallel to the axis of the cylinder bore.
Technical Paper

Performance Analysis and In-Cylinder Visualization of Conventional Diesel and Isobaric Combustion in an Optical Diesel Engine

2021-09-05
2021-24-0040
Compared to conventional diesel combustion (CDC), isobaric combustion can achieve a similar or higher indicated efficiency, lower heat transfer losses, reduced nitrogen oxides (NOx) emissions; however, with a penalty of soot emissions. While the engine performance and exhaust emissions of isobaric combustion are well known, the overall flame development, in particular, the flow-field details within the flames are unclear. In this study, the performance analysis of CDC and two isobaric combustion cases was conducted, followed by high-speed imaging of Mie-scattering and soot luminosity in an optically accessible, single-cylinder heavy-duty diesel engine. From the soot luminosity imaging, qualitative flow-fields were obtained using flame image velocimetry (FIV). The peak motoring pressure (PMP) and peak cylinder pressure (PCP) of CDC are kept fixed at 50 and 70 bar, respectively.
Technical Paper

Computational Investigation of the Effects of Injection Strategy and Rail Pressure on Isobaric Combustion in an Optical Compression Ignition Engine

2021-09-05
2021-24-0023
The high-pressure isobaric combustion has been proposed as the most suitable combustion mode for the double compre4ssion expansion engine (DCEE) concept. Previous experimental and simulation studies have demonstrated an improved efficiency compared to the conventional diesel combustion (CDC) engine. In the current study, isobaric combustion was achieved using a single injector with multiple injections. Since this concept involves complex phenomena such as spray to spray interactions, the computational models were extensively validated against the optical engine experiment data, to ensure high-fidelity simulations. The considered optical diagnostic techniques are Mie-scattering, fuel tracer planar laser-induced fluorescence (PLIF), and natural flame luminosity imaging. Overall, a good agreement between the numerical and experimental results was obtained.
Technical Paper

Probing Spark Discharge Behavior in High-speed Cross-flows through Modeling and Experimentation

2020-04-14
2020-01-1120
This paper presents a combined numerical and experimental investigation of the characteristics of spark discharge in a spark-ignition engine. The main objective of this work is to gain insights into the spark discharge process and early flame kernel development. Experiments were conducted in an inert medium within an optically accessible constant-volume combustion vessel. The cross-flow motion in the vessel was generated using a previously developed shrouded fan. Numerical modeling was based on an existing discharge model in the literature developed by Kim and Anderson. However, this model is applicable to a limited range of gas pressures and flow fields. Therefore, the original model was evaluated and improved to predict the behavior of spark discharge at pressurized conditions up to 45 bar and high-speed cross-flows up to 32 m/s. To accomplish this goal, a parametric study on the spark channel resistance was conducted.
Technical Paper

High-Speed Imaging of Main-Chamber Combustion of a Narrow Throat Pre-Chamber under Lean Conditions

2020-09-15
2020-01-2081
Pre-chamber combustion (PCC) allows an extension on the lean limit of an internal combustion engine (ICE). This combustion mode provides lower NOx emissions and shorter combustion durations that lead to a higher indicated efficiency. In the present work, a narrow throat pre-chamber was tested, which has a unique nozzle area distribution in two rows of six nozzle holes each. Tests were carried out in a modified heavy-duty engine for optical visualization. Methane was used as fuel for both the pre-chamber and the main chamber. Seven operating points were tested, including passive pre-chamber mode as a limit condition, to study the effect of pre- and main-chamber fuel addition on the pre-chamber jets and the main chamber combustion via chemiluminescence imaging. A typical cycle of one of the tested conditions is explained through the captured images. Observations of the typical cycle reveal a predominant presence of only six jets (from the lower row), with well-defined jet structures.
Technical Paper

A Demonstration of High Efficiency, High Reactivity Gasoline Compression Ignition Fuel in an On & Off Road Diesel Engine Application

2020-04-14
2020-01-1311
The regulatory requirements to reduce both greenhouse gases and exhaust gas pollutants from heavy duty engines are driving new perspectives on the interaction between fuels and engines. Fuels that reliefs the burden on engine manufacturers to reach these goals are of particular interest. A low carbon fuel with a higher volatility and heating value than diesel is one such fuel that reduces engine-out emissions and carbon footprint from the entire hydrocarbon lifecycle (well-to-wheel) and improves fuel efficiency, which is a main enabler for gasoline compression ignition (GCI) technology. The present study investigated the potential of GCI technology by evaluating the performance of a low carbon high efficiency, high reactivity gasoline fuel in Doosan’s 6L medium duty diesel engine.
Technical Paper

Combustion System Optimization of a Light-Duty GCI Engine Using CFD and Machine Learning

2020-04-14
2020-01-1313
In this study, the combustion system of a light-duty compression ignition engine running on a market gasoline fuel with Research Octane Number (RON) of 91 was optimized using computational fluid dynamics (CFD) and Machine Learning (ML). This work was focused on optimizing the piston bowl geometry at two compression ratios (CR) (17 and 18:1) and this exercise was carried out at full-load conditions (20 bar indicated mean effective pressure, IMEP). First, a limited manual piston design optimization was performed for CR 17:1, where a couple of pistons were designed and tested. Thereafter, a CFD design of experiments (DoE) optimization was performed where CAESES, a commercial software tool, was used to automatically perturb key bowl design parameters and CONVERGE software was utilized to perform the CFD simulations. At each compression ratio, 128 piston bowl designs were evaluated.
Journal Article

Obtaining Structure-borne Input for Hybrid FEA/SEA Engine Enclosure Models through a Simplified Transfer Path Analysis

2015-06-15
2015-01-2349
Structure-borne inputs to hybrid FEA/SEA models could have significant effects on the model prediction accuracy. The purpose of this work was to obtain the structure-borne noise (SBN) inputs using a simplified transfer path analysis (TPA) and identify the significance of the structure-borne and airborne contributions to the spectator sound power of an engine with enclosure for future modeling references. Force inputs to the enclosure from the engine were obtained and used as inputs to a hybrid engine enclosure model for sound prediction.
Journal Article

An Efficient Level-Set Flame Propagation Model for Hybrid Unstructured Grids Using the G-Equation

2016-04-05
2016-01-0582
Computational fluid dynamics of gas-fueled large-bore spark ignition engines with pre-chamber ignition can speed up the design process of these engines provided that 1) the reliability of the results is not affected by poor meshing and 2) the time cost of the meshing process does not negatively compensate for the advantages of running a computer simulation. In this work a flame propagation model that runs with arbitrary hybrid meshes was developed and coupled with the KIVA4-MHI CFD solver, in order to address these aims. The solver follows the G-Equation level-set method for turbulent flame propagation by Tan and Reitz, and employs improved numerics to handle meshes featuring different cell types such as hexahedra, tetrahedra, square pyramids and triangular prisms. Detailed reaction kinetics from the SpeedCHEM solver are used to compute the non-equilibrium composition evolution downstream and upstream of the flame surface, where chemical equilibrium is instead assumed.
Journal Article

Understanding Hydrocarbon Emissions in Heavy Duty Diesel Engines Combining Experimental and Computational Methods

2017-03-28
2017-01-0703
Fundamental understanding of the sources of fuel-derived Unburned Hydrocarbon (UHC) emissions in heavy duty diesel engines is a key piece of knowledge that impacts engine combustion system development. Current emissions regulations for hydrocarbons can be difficult to meet in-cylinder and thus after treatment technologies such as oxidation catalysts are typically used, which can be costly. In this work, Computational Fluid Dynamics (CFD) simulations are combined with engine experiments in an effort to build an understanding of hydrocarbon sources. In the experiments, the combustion system design was varied through injector style, injector rate shape, combustion chamber geometry, and calibration, to study the impact on UHC emissions from mixing-controlled diesel combustion.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion- Part II

2020-04-14
2020-01-0780
In order to extend the operability limit of the gasoline compression ignition (GCI) engine, as an avenue for low temperature combustion (LTC) regime, the effects of parametric variations of engine operating conditions on the performance of six-stroke GCI (6S-GCI) engine cycle are numerically investigated, using an in-house 3D CFD code coupled with high-fidelity physical sub-models along with the Chemkin library. The combustion and emissions were calculated using a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Authors’ previous study highlighted the effects of the variation of injection timing and split ratio on the overall performance of 6S-GCI engine and the unique mixing-controlled burning mode of the charge mixtures during the two additional strokes. As a continuing effort, the present study details the parametric studies of initial gas temperature, boost pressure, fuel injection pressure, compression ratio, and EGR ratio.
Technical Paper

Real Fuel Modeling for Gasoline Compression Ignition Engine

2020-04-14
2020-01-0784
Increasing regulatory demand for efficiency has led to development of novel combustion modes such as HCCI, GCI and RCCI for gasoline light duty engines. In order to realize HCCI as a compression ignition combustion mode system, in-cylinder compression temperatures must be elevated to reach the autoignition point of the premixed fuel/air mixture. This should be co-optimized with appropriate fuel formulations that can autoignite at such temperatures. CFD combustion modeling is used to model the auto ignition of gasoline fuel under compression ignition conditions. Using the fully detailed fuel mechanism consisting of thousands of components in the CFD simulations is computationally expensive. To overcome this challenge, the real fuel is represented by few major components of create a surrogate fuel mechanism. In this study, 9 variations of gasoline fuel sets were chosen as candidates to run in HCCI combustion mode.
Technical Paper

Validation of Computational Models for Isobaric Combustion Engines

2020-04-14
2020-01-0806
The focus of this study is to aid the development of the isobaric combustion engine by investigating multiple injection strategies at moderately high pressures. A three-dimensional (3D) commercial computational fluid dynamics (CFD) code, CONVERGE, was used to conduct simulations. The validation of the isobaric combustion case was carried out through the use of a single injector with multiple injections. The computational simulations were matched to the experimental data using methods outlined in this paper for different multiple injection cases. A sensitivity analysis to understand the effects of different modeling components on the quantitative prediction was carried out. First, the effects of the kinetic mechanisms were assessed by employing different chemical mechanisms, and the results showed no significant difference in the conditions under consideration.
Technical Paper

Effects of Geometry on Passive Pre-Chamber Combustion Characteristics

2020-04-14
2020-01-0821
Towards a fundamental understanding of the ignition characteristics of pre-chamber (PC) combustion engines, computational fluid dynamics (CFD) simulations were conducted using CONVERGE. To assist the initial design of the KAUST pre-chamber engine experiments, the primary focus of the present study was to assess the impact of design parameters such as throat diameter, nozzle diameter, and nozzle length. The well-stirred reactor combustion model coupled with a methane oxidation mechanism reduced from GRI 3.0 was used. A homogeneous charge of methane and air with λ = 1.3 on both the PC and main chamber (MC) was assumed. The geometrical parameters were shown to affect the pre-chamber combustion characteristics, such as pressure build-up, radical formation, and heat release as well as the composition of the jets penetrating and igniting the main chamber charge. In addition, the backflow of species pushed inside the pre-chamber due to the flow reversal (FR) event was analyzed.
Technical Paper

A Numerical Study on the Ignition of Lean CH4/Air Mixture by a Pre-Chamber-Initiated Turbulent Jet

2020-04-14
2020-01-0820
To provide insights into the fundamental characteristics of pre-chamber combustion engines, the ignition of lean premixed CH4/air due to hot gas jets initiated by a passive narrow throated pre-chamber in a heavy-duty engine was studied computationally. A twelve-hole pre-chamber geometry was investigated using CONVERGETM software. The numerical model was validated against the experimental results. To elucidate the main-chamber ignition mechanism, the spark plug location and spark timing were varied, resulting in different pressure gradient during turbulent jet formation. Different ignition mechanisms were observed for turbulent jet ignition of lean premixed CH4/air, based on the geometry effect. Ignition behavior was classified into the flame and jet ignition depending on the significant presence of hot active radicals. The jet ignition, mainly due to hot product gases was found to be advanced by the addition of a small concentration of radicals.
Technical Paper

Development of Fast Idle Catalyst Light-Off Strategy for Gasoline Compression Ignition Engine - Part 1

2020-04-14
2020-01-0316
The present investigation pertains to the development of fast idle catalyst light-off strategy for a light duty gasoline compression ignition (GCI) engine. The engine cold start fast idle operation poses a problem of increased criteria emissions if the catalyst is not activated during the warm up period. Therefore, a control strategy is proposed here to minimize the criteria pollutants during the fast idle phase via enabling fast catalyst light off in a GCI engine and relying on the spark ignition of a globally stoichiometric fuel air mixture. The engine has unique design features such as certain geometry configuration between spark plug and fuel injector arrangement, and the location of spark plug in a high compression ratio (CR) diesel-like combustion chamber. The experiments were performed in a single cylinder GCI engine at cold start fast idle conditions using certification gasoline fuel (RON 91).
Technical Paper

Experimental Investigation of the Compression Ignition Process of High Reactivity Gasoline Fuels and E10 Certification Gasoline using a High-Pressure Direct Injection Gasoline Injector

2020-04-14
2020-01-0323
Gasoline compression ignition (GCI) technology shows the potential to obtain high thermal efficiencies while maintaining low soot and NOx emissions in light-duty engine applications. Recent experimental studies and numerical simulations have indicated that high reactivity gasoline-like fuels can further enable the benefits of GCI combustion. However, there is limited empirical data in the literature studying the gasoline compression ignition process at relevant in-cylinder conditions, which are required for further optimizing combustion system designs. This study investigates the temporal and spatial evolution of the compression ignition process of various high reactivity gasoline fuels with research octane numbers (RON) of 71, 74 and 82, as well as a conventional RON 97 E10 gasoline fuel. A ten-hole prototype gasoline injector specifically designed for GCI applications capable of injection pressures up to 450 bar was used.
Technical Paper

Alleviating the Magnetic Effects on Magnetometers Using Vehicle Kinematics for Yaw Estimation for Autonomous Ground Vehicles

2020-04-14
2020-01-1025
Autonomous vehicle operation is dependent upon accurate position estimation and thus a major concern of implementing the autonomous navigation is obtaining robust and accurate data from sensors. This is especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU consists of a 3-axis gyro, 3-axis accelerometer, and 3-axis magnetometer. The IMU provides vehicle orientation in 3D space in terms of yaw, roll and pitch. Out of which, yaw is a major parameter to control the ground vehicle’s lateral position during navigation. The accelerometer is responsible for attitude (roll-pitch) estimates and magnetometer is responsible for yaw estimates. However, the magnetometer is prone to environmental magnetic disturbances which induce errors in the measurement.
X