Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions

2009-04-20
2009-01-1102
Premixed Charge Compression Ignition (PCCI), a Low Temperature Combustion (LTC) strategy for diesel engines is of increasing interest due to its potential to simultaneously reduce soot and NOx emissions. However, the influence of mixture preparation on combustion phasing and heat release rate in LTC is not fully understood. In the present study, the influence of injection timing on mixture preparation, combustion and emissions in PCCI mode is investigated by experimental and computational methods. A sequential coupling approach of 3D CFD with a Stochastic Reactor Model (SRM) is used to simulate the PCCI engine. The SRM accounts for detailed chemical kinetics, convective heat transfer and turbulent micro-mixing. In this integrated approach, the temperature-equivalence ratio statistics obtained using KIVA 3V are mapped onto the stochastic particle ensemble used in the SRM.
Journal Article

Enhancing the Performance of Microperforated Panel Absorbers by Designing Custom Backings

2013-05-13
2013-01-1937
Micro-perforated (MPP) panels are acoustic absorbers that are non-combustible, acoustically tunable, lightweight, and environmentally friendly. In most cases, they are spaced from a wall, and that spacing determines the frequency range where the absorber performs well. The absorption is maximized when the particle velocity in the perforations is high. Accordingly, the absorber performs best when positioned approximately a quarter acoustic wavelength from the wall, and larger cavity depths improve the low frequency absorption. At multiples of one half acoustic wavelength, the absorption is minimal. Additionally, the absorption is minimal at low frequencies due to the limited cavity depth behind the MPP. By partitioning the backing cavity, the cavity depth can be strategically increased and varied. This will improve the absorption at low frequencies and can provide absorption over a wide frequency range.
Journal Article

Simulation of Enclosures Including Attached Duct Work

2013-05-13
2013-01-1958
Partial enclosures are commonly utilized to reduce the radiated noise from equipment. Often, enclosure openings are fitted with silencers or louvers to further reduce the noise emitted. In the past, the boundary element method (BEM) has been applied to predict the insertion loss of the airborne path with good agreement with measurement. However, an alteration at the opening requires a new model and additional computational time. In this paper, a transfer function method is proposed to reduce the time required to assess the effect of modifications to an enclosure. The proposed method requires that the impedance at openings be known. Additionally, transfer functions relating the sound pressure at one opening to the volume velocity at other openings must be measured or determined using simulation. It is assumed that openings are much smaller than an acoustic wavelength. The sound power from each opening is determined from the specific acoustic impedance and sound pressure at the opening.
Journal Article

Adding Bypass Ducts to Enhance Muffler Performance without Increasing Size

2013-05-13
2013-01-1882
It was demonstrated that a bypass duct similar to a Herschel- Quincke tube could be used to increase the transmission loss of mufflers at selected frequencies. In many cases, the duct can be short and thought of as a leak. It was shown that the optimal length and cross-sectional area could be determined by using a simple optimization technique known as the Vincent Circle. Most importantly, it was demonstrated that the attenuation at low frequencies could be improved by as much as 15 dB. To prove the concept, a muffler was designed and optimized using transfer matrix theory. Then, the optimized muffler was constructed and the transmission loss measured using the two-load method. The measured results compared well with prediction from transfer matrix theory. Boundary element simulation was then used to further study the attenuation mechanism.
Journal Article

Using the Reciprocal Work Identity to Evaluate the Transmission Loss of Mufflers

2013-05-13
2013-01-1888
Transmission loss (TL) is a good performance measure of mufflers since it represents the muffler's inherent capability of sound attenuation. There are several existing numerical methods, which have been widely used to calculate the TL from numerical simulation results, such as the four-pole and three-point methods. In this paper, a new approach is proposed to evaluate the transmission loss based on the reciprocal work identity. The proposed method does not assume plane wave propagation in the inlet and outlet ducts, and more importantly, does not explicitly apply the anechoic termination impedance at the outlet. As a result, it has the potential of extending TL computation above the plane wave cut-off frequency.
Technical Paper

Design of Double-Tuned Helmholtz Resonators Created by Punching Small Slots on a Thin-Walled Tube to Reduce Low-Frequency Tonal Noise

2021-08-31
2021-01-1040
Helmholtz resonators are often used in the design of vehicle mufflers to target tonal noise at a few specific low frequencies generated by the engine. Due to the uncertainty of temperature variations and different engine speeds, multiple resonators may have to be built in series to cover a narrow band of frequencies. Double-tuned Helmholtz resonators (DTHR) normally consist of two chambers connected in series. Openings or necks are created by punching small slots into a thin-walled tube which provide a natural neck passage to the enclosing volume of the Helmholtz resonator. In this paper, numerical analyses using both the boundary element (BEM) and the finite element (FEM) methods are performed and simulation results are compared against one another. A typical real-world muffler configuration commonly used in passenger vehicles is used in a case study.
Technical Paper

Measurement of the Transmission Loss of Thin Panels Using the Two-Load Impedance Tube Method

2021-08-31
2021-01-1059
The two-load method is used to measure the transmission loss of thin panels in two different sized impedance tubes (3.49 cm and 10.16 cm). Samples were initially tested with a clamped boundary condition. This was followed by tests with an elastomer inserted between the tube and tested sample to adjust the boundary condition at the periphery. In all tests performed, the influence of the sample holding method could not be removed from the test. The measured transmission loss was compared to finite element simulation with good agreement for both impedance tubes. Additionally, the effect of a compliant boundary condition along the periphery of the sample was also validated via simulation.
Technical Paper

Measurement of Sound Power Due to Flow Noise at the Outlet of a Straight Pipe

2021-08-31
2021-01-1050
Intake, exhaust, and heating / air conditioning systems in automobiles consist of various common duct elements. Noise arises primarily due to the source and is attenuated using common elements like expansion chambers and resonators. This attenuation is straightforward to predict using plane wave simulation and more advanced numerical methods. However, flow noise is often an unexpected important noise source. Predictions require computer intensive analyses. To better understand the aeroacoustic sources in duct systems, a flow rig has been developed at the University of Kentucky. The flow rig consists of a blower, a silencer to attenuate blower noise, external noise sources, and then the test duct. The flow rig can be equipped with an anechoic termination to measure transmission loss or may be used to measure insertion loss directly. In the latter case, the sound power is measured from the pipe outlet inside of a hemi-anechoic chamber.
Technical Paper

A Direct 1D/3D (GT-SUITE/SimericsMP+) Coupled Computational Approach to Study the Impact of Engine Oil Pan Sloshing on Lubrication Pump Performance

2020-04-14
2020-01-1112
During a vehicle drive cycle, the oil in the engine oil pan sloshes very vigorously due to the acceleration of the vehicle. This can cause the pickup tube in the engine oil pan to become uncovered from oil and exposed to air, which affects the lubrication pump performance. Engine oil pan sloshing is inherently a 3D problem as the free oil surface is constantly changing. Multi-dimensional Computational Fluid Dynamics (CFD) methods are very useful to simulate such problems with high detail and accuracy but are computationally very expensive. Part of the engine lubrication system, such as the pump, can be modelled in 1D which can predict accurate results at relatively high computational speeds. By utilizing the advantages of both 1D and 3D CFD models, a coupled 1D-3D simulation approach has been developed to capture the detailed oil sloshing phenomenon in SimericsMP+ and the system level simulation is conducted in GT-SUITE where 3D spatial data is not required.
Journal Article

Determination of the Transfer Matrix for Isolators Using Simulation with Application to Determining Insertion Loss

2015-06-15
2015-01-2226
Transmissibility is the most common metric used for isolator characterization. However, engineers are becoming increasingly concerned about energy transmission through an isolator at high frequencies and how the compliance of the machine and foundation factor into the performance. In this paper, the transfer matrix approach for isolator characterization is first reviewed. Two methods are detailed for determining the transfer matrix of an isolator using finite element simulation. This is accomplished by determining either the mobility or impedance matrix for the isolator and then converting to a transfer matrix. It is shown that results are similar using either approach. In both cases, the isolator is first pre-loaded before the transfer matrix is determined. The approach to find isolator insertion loss is demonstrated for an isolator between two plates, and the effect of making changes to the structural impedance on the machine side of the isolator by adding ribs is examined.
Journal Article

Obtaining Structure-borne Input for Hybrid FEA/SEA Engine Enclosure Models through a Simplified Transfer Path Analysis

2015-06-15
2015-01-2349
Structure-borne inputs to hybrid FEA/SEA models could have significant effects on the model prediction accuracy. The purpose of this work was to obtain the structure-borne noise (SBN) inputs using a simplified transfer path analysis (TPA) and identify the significance of the structure-borne and airborne contributions to the spectator sound power of an engine with enclosure for future modeling references. Force inputs to the enclosure from the engine were obtained and used as inputs to a hybrid engine enclosure model for sound prediction.
Journal Article

A Parametric Investigation of Louvered Terminations for Rectangular Ducts

2015-06-15
2015-01-2356
The insertion loss of louvered terminations positioned at the end of a rectangular duct is determined using acoustic finite element analysis. Insertion loss was determined by taking the difference between the sound power with and without the louvers at the termination. Analyses were conducted in the plane wave regime and the acoustic source was anechoic eliminating any reflections from the source. The effect of different louver configurations on insertion loss was examined. Parameters investigated included louver length, angle, and spacing between louvers. Based on the analyses, equations were developed for the insertion loss of unlined louvers.
Journal Article

An Erosion Aggressiveness Index (EAI) Based on Pressure Load Estimation Due to Bubble Collapse in Cavitating Flows Within the RANS Solvers

2015-09-06
2015-24-2465
Despite numerous research efforts, there is no reliable and widely accepted tool for the prediction of erosion prone material surfaces due to collapse of cavitation bubbles. In the present paper an Erosion Aggressiveness Index (EAI) is proposed, based on the pressure loads which develop on the material surface and the material yield stress. EAI depends on parameters of the liquid quality and includes the fourth power of the maximum bubble radius and the bubble size number density distribution. Both the newly proposed EAI and the Cavitation Aggressiveness Index (CAI), which has been previously proposed by the authors based on the total derivative of pressure at locations of bubble collapse (DP/Dt>0, Dα/Dt<0), are computed for a cavitating flow orifice, for which experimental and numerical results on material erosion have been published. The predicted surface area prone to cavitation damage, as shown by the CAI and EAI indexes, is correlated with the experiments.
Journal Article

Residual Stress Distributions in Rectangular Bars Due to High Rolling Loads

2016-04-05
2016-01-0424
In this paper, residual stress distributions in rectangular bars due to rolling or burnishing at very high rolling or burnishing loads are investigated by roll burnishing experiments and three-dimensional finite element analyses using ABAQUS. First, roll burnishing experiments on rectangular bars at two roller burnishing loads are presented. The results indicate the higher burnishing load induces lower residual stresses and the higher burnishing load does not improve fatigue lives. Next, in the corresponding finite element analyses, the roller is modeled as rigid and the roller rolls on the flat surface of the bar with a low coefficient of friction. The bar material is modeled as an elastic-plastic strain hardening material with a nonlinear kinematic hardening rule for loading and unloading.
Journal Article

A CFD study of an Electronic Hydraulic Power Steering Helical External Gear Pump: Model Development, Validation and Application

2016-04-05
2016-01-1376
External gear pumps are positive displacement devices which perform with excellent efficiencies over a wide load and speed range. This wide range of performance is primarily due to micron-level leakage gaps in such machines which prevent large leakages at increasing loads. The present paper details a novel approach implemented in the commercial CFD tool PumpLinx that can capture the details of the micron level gaps, and model such machines accurately. The steps in creation of the model from original CAD geometry are described. In particular, the CFD mesh is created using a specialized template structured meshing method within PumpLinx especially created for external gear pumps and motors. This makes process of mesh creation and flow solution through complicated geometries of a gear pump efficient and streamlined.
Journal Article

Dynamic Three-Dimensional CFD Simulation of Closed Circuit Torque Converter Systems

2016-04-05
2016-01-1345
This paper details the capability of PumpLinx® and Simerics® in simulating both Steady-State (Multiple Reference Frame) and transient, three dimensional torque converter performance and predicting the coupling point in a closed torque converter system in automatic transmission. The focuses of the simulation are in predicting the performance characteristics of the torque converters at different turbine to impeller rotating speeds (speed ratios) for 7 different torque converter designs and determine the coupling point at 70°C temperature. The computational domain includes the complex 3D design of all the impeller, turbine and reactor blades, the path ways that the oil travels between the above three components and the leakage gaps between these components. The physics captured in the simulation include the turbulence in the flow field and the rigorous treatment of the Fluid Structure Interaction (FSI) for the one-way free wheel reactor in predicting coupling point.
Journal Article

Diffuse Field Sound Absorption of Microperforated Panels with Special Backings

2017-06-05
2017-01-1876
Microperforated panel absorbers are best considered as the combination of the perforate and the backing cavity. They are sometimes likened to Helmholtz resonators. This analogy is true in the sense that they are most effective at the resonant frequencies of the panel-cavity combination when the particle velocity is high in the perforations. However, unlike traditional Helmholtz resonators, microperforated absorbers are broader band and the attenuation mechanism is dissipative rather than reactive. It is well known that the cavity depth governs the frequency bands of high absorption. The work presented here focuses on the development, modeling and testing of novel configurations of backing constructions and materials. These configurations are aimed at both dialing in the absorption properties at specific frequencies of interest and creating broadband sound absorbers. In this work, several backing cavity strategies are considered and evaluated.
Journal Article

Understanding Hydrocarbon Emissions in Heavy Duty Diesel Engines Combining Experimental and Computational Methods

2017-03-28
2017-01-0703
Fundamental understanding of the sources of fuel-derived Unburned Hydrocarbon (UHC) emissions in heavy duty diesel engines is a key piece of knowledge that impacts engine combustion system development. Current emissions regulations for hydrocarbons can be difficult to meet in-cylinder and thus after treatment technologies such as oxidation catalysts are typically used, which can be costly. In this work, Computational Fluid Dynamics (CFD) simulations are combined with engine experiments in an effort to build an understanding of hydrocarbon sources. In the experiments, the combustion system design was varied through injector style, injector rate shape, combustion chamber geometry, and calibration, to study the impact on UHC emissions from mixing-controlled diesel combustion.
Journal Article

An Applied Approach for Large-Scale Multibody Dynamics Simulation and Machine-Terrain Interaction

2008-04-14
2008-01-1101
Virtual Product Development (VPD) is a key enabler in CAE and depends upon accurate implementation of multibody dynamics. This paper discusses the formulation and implementation of a large-scale multibody dynamics simulation code. In the presented formulation, the joint variables are used as the generalized coordinates and spatial algebra is used to formulate the system equations of motion. Although the presented formulation utilizes the joint variables as the generalized coordinates, closed-loop mechanisms can be easily modeled using impeded constraints. Baumgart stabilization approach is used to eliminate the constraint violations without using the expensive Newton-Raphson iterations. Integrated rigid and flexible body dynamic simulation allows accurate prediction of structural loads, stress, and strains. Both modal and nodal flexible body approaches are discussed in the paper.
Journal Article

Finite Element Analysis of Piezoelectric Composite Actuators

2011-04-12
2011-01-0218
Piezoelectric materials are smart materials that can undergo mechanical deformation when electrically or thermally activated. An electric voltage is generated on the surfaces when a piezoelectric material is subjected to a mechanical stress. This is referred to as the ‘direct effect’ and finds application as sensors. The external geometric form of this material changes when it is subjected to an applied voltage, known as ‘converse effect’ and has been employed in the actuator technology. Such piezoelectric actuators generate enormous forces and make highly precise movements that are extremely rapid, usually in the micrometer range. The current work is focused towards the realization and hence application of the actuator technology based on piezoelectric actuation. Finite element simulations are performed on different types of piezoelectric actuations to understand the working principle of various actuators.
X