Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Investigation on the Deformation of Injector Components and Its Influence on the Injection Process

2020-04-14
2020-01-1398
The deformation of injector components cannot be disregarded as the pressure of the system increases. Deformation directly affects the characteristics of needle movement and injection quantity. In this study, structural deformation of the nozzle, the needle and the control plunger under different pressures is calculated by a simulation model. The value of the deformation of injector components is calculated and the maximum deformation location is also determined. Furthermore, the calculated results indicates that the deformation of the control plunger increases the control chamber volume and the cross-section area between the needle and the needle seat. A MATLAB model is established to The influence of structural deformation on needle movement characteristics and injection quantity is investigate by a numerical model. The results show that the characteristic points of needle movement are delayed and injection quantity increases due to the deformation.
Journal Article

Fuzzy-PID Speed Control of Diesel Engine Based on Load Estimation

2015-04-14
2015-01-1627
In order to improve the anti-disturbance performance of engine-load and the effect on speed control for the diesel engine, the paper presents the fuzzy-PID speed control strategy in the architecture of torque-based control. The engine-load estimation algorithm is designed based on the mean-value-model and crankshaft dynamics model, and the estimation precision is validated by engine test in both steady and dynamic conditions. Through the experiment verification of the diesel engine, the fuzzy-PID control strategy based on load estimation can significantly improve the anti-disturbance performance of engine-load in the speed control.
Journal Article

Interaction of Gear-Shaft Dynamics Considering Gyroscopic Effect of Compliant Driveline System

2015-06-15
2015-01-2182
Due to the design of lightweight, high speed driveline system, the coupled bending and torsional vibration and rotordynamics must be considered to predict vibratory responses more realistically. In the current analysis, a lumped parameter model of the propeller shaft is developed with Timoshenko beam elements, which includes the effect of rotary inertia and shear deformation. The propeller shaft model is then coupled with a hypoid gear pair representation using the component mode synthesis approach. In the proposed formulation, the gyroscopic effect of both the gear and propeller shaft is considered. The simulation results show that the interaction between gear gyroscopic effect and propeller shaft bending flexibility has considerable influence on the gear dynamic mesh responses around bending resonances, whereas the torsional modes still dominate in the overall frequency spectrum.
Journal Article

Modeling and Simulation of Compression Molding Process for Sheet Molding Compound (SMC) of Chopped Carbon Fiber Composites

2017-03-28
2017-01-0228
Compression molded SMC composed of chopped carbon fiber and resin polymer which balances the mechanical performance and manufacturing cost presents a promising solution for vehicle lightweight strategy. However, the performance of the SMC molded parts highly depends on the compression molding process and local microstructure, which greatly increases the cost for the part level performance testing and elongates the design cycle. ICME (Integrated Computational Material Engineering) approaches are thus necessary tools to reduce the number of experiments required during part design and speed up the deployment of the SMC materials. As the fundamental stage of the ICME workflow, commercial software packages for SMC compression molding exist yet remain not fully validated especially for chopped fiber systems. In the present study, SMC plaques are prepared through compression molding process.
Journal Article

On the Effect of Friction Law in Closed-Loop Coupling Disc Brake Model

2016-04-05
2016-01-0476
Brake squeal is a complex dynamics instability issue for automobile industry. Closed-loop coupling model deals with brake squeal from a perspective of structural instability. Friction characteristics between pads and disc rotor play important roles. In this paper, a closed-loop coupling model which incorporates negative friction-velocity slope is presented. Different from other existing models where the interface nodes are coupled through assumed springs, they are connected directly in the presented model. Negative friction slope is taken into account. Relationship between nodes’ frictional forces, relative speeds and brake pressure under equilibrant sliding and vibrating states is analysed. Then repeated nodal coordinate elimination and substructures’ modal coordinate space transformation of system dynamic equation are performed. It shows that the negative friction slope leads to negative damping items in dynamic equation of system.
Journal Article

Study on Repeated-Root Modes in Substructure Modal Composition Analysis

2016-04-05
2016-01-0477
The dynamic properties of disc rotor play important role in the NVH performance of a disc brake system. Disc rotor in general is a centrosymmetric structure. It has many repeated-root modes within the interested frequency range and they may have significant influence on squeal occurrence. A pair of repeated-root modes is in nature one vibration mode. However, in current complex eigenvalue analysis model and relevant analysis methods, repeated-root modes are processed separately. This may lead to contradictory result. This paper presents methods to deal with repeated-root modes in substructure modal composition (SMC) analysis to avoid the contradiction. Through curve-fitting technique, the modal shape coefficients of repeated-root modes are expressed in an identical formula. This formula is used in SMC analysis to obtain an integrated SMC value to represent the total influence of two repeated-root modes.
Journal Article

A Semi-Detailed Chemical Kinetic Mechanism of Acetone-Butanol-Ethanol (ABE) and Diesel Blends for Combustion Simulations

2016-04-05
2016-01-0583
With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. To seek for an optimized volumetric ratio for ABE-diesel blends, the previous work in our team has experimentally investigated and analyzed the combustion features of ABE-diesel blends with different volumetric ratio (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %) in a constant volume chamber. It was found that an increased amount of acetone would lead to a significant advancement of combustion phasing whereas butanol would compensate the advancing effect. Both spray dynamic and chemistry reaction dynamic are of great importance in explaining the unique combustion characteristic of ABE-diesel blend. In this study, a semi-detailed chemical mechanism is constructed and used to model ABE-diesel spray combustion in a constant volume chamber.
Journal Article

Damage Prediction for the Starter Motor of the Idling Start-Stop System Based on the Thermal Field

2017-06-28
2017-01-9181
A coupled magnetic-thermal model is established to study the reason for the damage of the starter motor, which belongs to the idling start-stop system of a city bus. A finite element model of the real starter motor is built, and the internal magnetic flux density nephogram and magnetic line distribution chart of the motor are attained by simulation. Then a model in module Transient Thermal of ANSYS is established to calculate the stator and rotor loss, the winding loss and the mechanical loss. Three kinds of losses are coupled to the thermal field as heat sources in two different conditions. The thermal field and the components’ temperature distribution in the starting process are obtained, which are finally compared with the already-burned motor of the city bus in reality to predict the damage. The analysis method proposed is verified to be accurate and reliable through comparing the actual structure with the simulation results.
Journal Article

A Comparative Study of Two ASTM Shear Test Standards for Chopped Carbon Fiber SMC

2018-04-03
2018-01-0098
Chopped carbon fiber sheet molding compound (SMC) material is a promising material for mass-production lightweight vehicle components. However, the experimental characterization of SMC material property is a challenging task and needs to be further investigated. There now exist two ASTM standards (ASTM D7078/D7078M and ASTM D5379/D5379M) for characterizing the shear properties of composite materials. However, it is still not clear which standard is more suitable for SMC material characterization. In this work, a comparative study is conducted by performing two independent Digital Image Correlation (DIC) shear tests following the two standards, respectively. The results show that ASTM D5379/D5379M is not appropriate for testing SMC materials. Moreover, the failure mode of these samples indicates that the failure is caused by the additional moment raised by the improper design of the fixture.
Technical Paper

A Dynamic Trajectory Planning for Automatic Vehicles Based on Improved Discrete Optimization Method

2020-04-14
2020-01-0120
The dynamic trajectory planning problem for automatic vehicles in complex traffic scenarios is investigated in this paper. A hierarchical motion planning framework is developed to complete the complex planning task. An improved dangerous potential field in the curvilinear coordinate system is constructed to describe the collision risk of automatic vehicles accurately instead of the discrete Gaussian convolution algorithm. At the same time, the driving comfort is also considered in order to generate an optimal, smooth, collision-free and feasible path in dynamics. The optimal path can be mapped into the Cartesian coordinate system simply and conveniently. Furthermore, a velocity profile considering practical vehicle dynamics is also presented to improve the safety and the comfort in driving. The effectiveness of the proposed dynamic trajectory planning is verified by numerical simulation for several typical traffic scenarios.
Journal Article

Numerical Optimization on a Centrifugal Turbocharger Compressor

2008-06-23
2008-01-1697
Performances of a centrifugal turbocharger compressor are investigated and validated in this paper. Based on the validation results, numerical optimizations are performed using ANN and CFD methods. Different impeller geometry with free parameters controlling stacking laws, end-wall, blade sectional camber curves and corresponding performances are used as input layer of ANN in the optimization, while adiabatic total-to-total efficiency and total pressure ratio are used as output layer of the optimization cycle. With this method, the performances of the compressor investigated in this paper are improved notably.
Journal Article

A Methodology to Integrate a Nonlinear Shock Absorber Dynamics into a Vehicle Model for System Identification

2011-04-12
2011-01-0435
High fidelity mathematical vehicle models that can accurately capture the dynamics of car suspension system are critical in vehicle dynamics studies. System identification techniques can be employed to determine model type, order and parameters. Such techniques are well developed and usually used on linear models. Unfortunately, shock absorbers have nonlinear characteristics that are non-negligible, especially with regard the vehicle's vertical dynamics. In order to effectively employ system identification techniques on a vehicle, a nonlinear mathematical shock absorber model must be developed and then coupled to the linear vehicle model. Such an approach addresses the nonlinear nature of the shock absorber for system identification purposes. This paper presents an approach to integrate the nonlinear shock absorber model into the vehicle model for system identification.
Technical Paper

Design and Production of Mg Wheels in China

2007-04-16
2007-01-1035
The high strength-weight ratio and high damping capability of Magnesium alloys implies significant potentials for improving fuel efficiency and vehicle performance with the use Mg wheels. In this paper, a brief review is given of the current state of art in Mg wheel production, followed by a summary of the mechanical and casting properties of Mg alloys. The difficulties that hinder the wide use of Mg wheels are discussed. The R&D activities in China in the fields of Mg wheel design and casting are described. The focus of this paper is on the design and the development of a new squeeze casting process that makes it feasible to produce high-quality Mg wheels with cost efficiency. Finally, the expected commercial use of Mg wheels in the near future in Chinese motorbikes is outlined.
Technical Paper

Studies on Anti-Slip Regulation Technologies for AMT Vehicles

2007-04-16
2007-01-1314
In order to improve the tractive ability, steering capability and directional stability, etc. of automated mechanical transmission (AMT) vehicles running on the wet and slippery road, the anti-slip regulation (ASR) technologies for AMT vehicles are developed. The significance of ASR for AMT vehicles is introduced; a road friction recognition method based on the deceleration of driving wheels is investigated; a fuzzy anti-slip control system based on adjustment of engine torque is developed and the corresponding experimental verification is conducted. The experimental results denote that the proposed method is effective to eliminate the excessive slip when the AMT vehicle travels on the low friction road.
Technical Paper

Research on Control Strategy of Shifting Progress

2008-06-23
2008-01-1684
Based on BF6M1015CP electronic diesel engine (it is a supercharged, water-cooled engine. It has 6 cylinders and it is for heavy-duty vehicle) and HD4070PR electronic automatic transmission (it covers heavy-duty applications requiring high input horsepower and torque. It contains torque converter module, control module, planetary module and output module. It has 7 forward gears and a power-take -off (PTO) and a retarder), the paper analyzes the shift system of an electronic automatic transmission and sets up a mathematic module of the shifting process. With the model the shifting process is analyzed and the model can be used directly in shifting process control, and the rules of shifting process can be derived. To improve the shift quality, in the paper the different control methods in different phases are used and reviewed that Include the open-loop control, fixed ramp rate, and closed-loop control.
Technical Paper

Design and Development of a Real-time Dynamic AMT Test Bench for Simulating Total Road Forces of Vehicle

2008-06-23
2008-01-1682
In this paper the hardware and software of a real-time dynamic test bench for simulating the total road forces of vehicles fitted with Automated Manual Transmissions (AMT) is described. First, the purpose and meaning of this research are discussed. And then, we select the hardware components of the test bench system according to the application requirements and complete the system design. Statement of the structure, working principle and function of the system is also included in this part. According to the experimental procedure of simulating total road load forces of vehicle under real-time conditions on the dynamic test bench, the software system is designed using Visual C++ 6.0, CAN bus communication protocol, RS-232, and network technology. Finally, some experimental tests for the system are carried out with the results that this design corresponds to the real-time dynamic requirements.
Technical Paper

Numerical Study of Ultra Low Solidity Airfoil Diffuser in an Automotive Turbocharger Compressor

2009-04-20
2009-01-1470
For the application of advanced clean combustion technologies, such as diesel HCCI/LTC, a compressor with high efficiency over a broad operation range is required to supply a high amount of EGR with minimum pumping loss. A compressor with high pitch of vaneless diffuser would substantially improve the flow range of the compressor, but it is at the cost of compressor efficiency, especially at low mass flow area where most of the city driving cycles resides. In present study, an ultra low solidity compressor vane diffuser was numerically investigated. It is well known that the flow leaving the impeller is highly distorted, unsteady and turbulent, especially at relative low mass flow rate and near the shroud side of the compressor. A conventional vaned diffuser with high stagger angle could help to improve the performance of the compressor at low end. However, adding diffuser vane to a compressor typically restricts the flow range at high end.
Technical Paper

Study on Natural Torsional Vibration Characteristics of Dual Mass - Flywheel Radial Spring Type Torsional Vibration Damper

2009-05-19
2009-01-2062
The working principle of dual mass flywheel - radial spring (DMF-RS) type torsional vibration damper was analyzed, and the design method of natural torsional vibration characteristics control of DMF-RS type torsional damper for automotive powertrains was studied herein. Based on the multi-freedom lumped mass - torsional vibration spring analysis model of powertrain, the natural torsional vibration characteristics of the system with DMF-RS type torsional damper were analyzed, and compared with the clutch type torsional vibration damper, the effectiveness of DMF-RS type torsional damper on the torsional vibration control was verified.
Technical Paper

A computer-based simulation and test system for the calibration of EFI engine

2000-06-12
2000-05-0094
When the EFI system is used in a specific engine, lots of experiments are needed to optimize the control data (MAP). This work is time and financial consuming. This paper aims to develop a computer-based simulation and test system, which can produce the initial control MAP with good accuracy, and calibrate the ECU on-line. So the experiments are reduced and calibration is accelerated. In order to improve the accuracy of the initial control data, the mathematical models are built not only based on theoretical equations, but also on the control data of typical operation points, which is obtained by the on- line calibration of specific engines. This system can also perform some special calibrations, like "constant pulse width" and "square wave modulation."
Technical Paper

Experimental and Computational Analysis of Impact of Self Recirculation Casing Treatment on Turbocharger Compressor

2010-04-12
2010-01-1224
Self recirculation casing treatment has been showed to be an effective technique to extend the flow range of the compressor. However, the mechanism of its surge extension on turbocharger compressor is less understood. Investigation and comparison of internal flow filed will help to understand its impact on the compressor performance. In present study, experimentally validated CFD analysis was employed to study the mechanism of surge extension on the turbocharger compressor. Firstly a turbocharger compressor with replaceable inserts near the shroud of the impeller inlet was designed so that the overall performance of the compressor with and without self recirculation casing treatment could be tested and compared. Two different self recirculation casing treatments had been tested: one is conventional self recirculation casing treatment and the other one has deswirl vanes inside the casing treatment passage.
X