Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Path Planning Method for Perpendicular Parking Based on Vehicle Kinematics Model Using MPC Optimization

2022-03-29
2022-01-0085
In recent years, intelligent driving technology is being extensively studied. This paper proposes a path planning method for perpendicular parking based on vehicle kinematics model using MPC optimization, which aims to solve the perpendicular parking task. Firstly, in the case of any initial position and orientation of the vehicle, judging whether the vehicle can be parked at one step according to the location of the parking place and the width of the lane, and then calculating the starting position for parking, and use the Bezier curve to connect the initial position and the starting position. Secondly, reference parking path is calculated according to the collision constraints of the parking space. Finally, because the parking path based on the vehicle kinematics model is composed of circle arcs and straight lines, the curvature of the path is discontinuous. The reference parking path is optimized using Model Predictive Control (MPC).
Technical Paper

Model-Based Pitch Control for Distributed Drive Electric Vehicle

2019-04-02
2019-01-0451
On the dual-motor electric vehicle, which is driven by two electric motors mounted on the front and rear axles respectively, longitudinal dynamic control and electro-dynamic braking can be achieved by controlling the torque of front and rear axle motors respectively. Suspension displacement is related to the wheel torque, thus the pitch of vehicle body can be influenced by changing the torque distribution ratio. The pitch of the body has a great influence on the vehicle comfort, which occurs mainly during acceleration and braking progress. Traditionally active suspension is adopted to control the pitch of body. Instead, in this paper an ideal torque distribution strategy is developed to limit the pitch during acceleration and braking progress. This paper first explores the relationship between the torque distribution and the body pitch through the real vehicle test, which reveals the feasibility of the vehicle comfort promotion by optimizing the torque distribution coefficient.
Technical Paper

Distributed Drive Electric Vehicle Longitudinal Velocity Estimation with Adaptive Kalman Filter: Theory and Experiment

2019-04-02
2019-01-0439
Velocity is one of the most important inputs of active safety systems such as ABS, TCS, ESC, ACC, AEB et al. In a distributed drive electric vehicle equipped with four in-wheel motors, velocity is hard to obtain due to all-wheel drive, especially in wheel slipping conditions. This paper focus on longitudinal velocity estimation of the distributed drive electric vehicle. Firstly, a basic longitudinal velocity estimation method is built based on a typical Kalman filter, where four wheel speeds obtained by wheel speed sensors constitute an observation variable and the longitudinal acceleration measured by an inertia moment unit is chosen as input variable. In simulations, the typical Kalman filter show good results when no wheel slips; when one or more wheels slip, the typical Kalman filter with constant covariance matrices does not work well. Therefore, a gain matrix adjusting Kalman filter which can detect the wheel slip and cope with that is proposed.
Technical Paper

Decision-Making for Intelligent Vehicle Considering Uncertainty of Road Adhesion Coefficient Estimation: Autonomous Emergency Braking Case

2020-10-29
2020-01-5109
Since data processing methods could not completely eliminate the uncertainty of signals, it is a key issue for stable and robust decision-making for uncertainty tolerance of intelligent vehicles. In this paper, a decision-making for an Autonomous Emergency Braking (AEB) case considering the uncertainty of road adhesion coefficient estimation (RACE) is proposed. Firstly, the 3σ criterion is employed to classify the confidence in order to establish the decision-making mechanism considering the signal uncertainty of RACE. Secondly, the model for AEB with the uncertainty of the road adhesion coefficient estimated is designed based on the Seungwuk Moon model. Thirdly, a CCRs and CCRm scenario was designed to verify the feasibility in reference to the European New Car Assessment Programme (Euro NCAP) standard. Finally, the results of 10,000 cycles test illustrate that the proposed method is stable and could significantly improve the safety confidence both in the CCRs and CCRm scenarios.
Technical Paper

4D Radar-Inertial SLAM based on Factor Graph Optimization

2024-04-09
2024-01-2844
SLAM (Simultaneous Localization and Mapping) plays a key role in autonomous driving. Recently, 4D Radar has attracted widespread attention because it breaks through the limitations of 3D millimeter wave radar and can simultaneously detect the distance, velocity, horizontal azimuth and elevation azimuth of the target with high resolution. However, there are few studies on 4D Radar in SLAM. In this paper, RI-FGO, a 4D Radar-Inertial SLAM method based on Factor Graph Optimization, is proposed. The RANSAC (Random Sample Consensus) method is used to eliminate the dynamic obstacle points from a single scan, and the ego-motion velocity is estimated from the static point cloud. A 4D Radar velocity factor is constructed in GTSAM to receive the estimated velocity in a single scan as a measurement and directly integrated into the factor graph. The 4D Radar point clouds of consecutive frames are matched as the odometry factor.
X