Refine Your Search

Topic

Author

Search Results

Technical Paper

High Performance Forged Steel Crankshafts - Cost Reduction Opportunities

1992-02-01
920784
Higher horsepower per liter engines have put more demand on the crankshaft, often requiring the use of forged steel. This paper examines cost reduction opportunities to offset the penalties associated with forged steel, with raw material and machinability being the primary factors evaluated. A cost model for crankshaft processing is utilized in this paper as a design tool to select the lowest cost material grade. This model is supported by fatigue and machinability data for various steel grades. Materials considered are medium carbon, low alloy, and microalloy steels; the effects of sulfur as a machining enhancer is also studied.
Technical Paper

Exterior Body Panels - Present Manufacturing Implementation and Future Directions and Needs

1992-02-01
920372
Advances in computerized solid modeling techniques allow the realistic representation of exterior body panels as solid models, at the concept stage of part design. A flow chart of the process is presented on the use of solid models to create exterior body panels. The flow chart allows a study of the process and is extended to the next generation of capabilities.
Technical Paper

A Comparison of Aluminum, Sheet Molding Compound and Steel for Hoods

1992-02-01
920242
A unique opportunity arose to make a direct comparison of aluminum, sheet molding compound (SMC) and steel using a common hood design. In considering all possible material combinations of inner and outer panels, it was discovered that some of the combinations were incompatible due to material properties. Only the compatible material combinations were considered. Three different joining techniques - welding, bonding and bonded hem flanging - were evaluated. The cost, weight and structural performance of the chosen hood material combinations were established. Areas of further development were identified, including design optimization for specific material combinations.
Technical Paper

Improvements in the Dent Resistance of Steel Body Panels

1992-02-01
920243
A computer-controlled body panel testing machine has been used to quantify stiffness and dent resistance of body panels at Chrysler. The influence of yield strength and local reinforcement on the mechanical behavior of automotive door panels has been investigated. Medium strength steels in the range of 210 -240 MPa yield strength have produced significant improvements in dent resistance over a 160 MPa yield strength steel. Considerable improvements in dent resistance can also be attributed to the use of local, adhesively attached, glass fiber reinforcement patches. The effects of boundary conditions and panel shape on stiffness and dent resistance are illustrated in this application.
Technical Paper

Evaluation of Automotive Front Seat Structure Constructed of Polymer Composite

1992-02-01
920335
Seats play an important role in determining customer satisfaction and safety. They also represent three to five percent of the overall vehicle cost and weight. Therefore, automotive manufacturers are continuously seeking ways to improve the areas of comfort, safety, reliability, cost and weight within the seat system. The purpose of this paper is to review the development of an automotive front seat constructed of injection molded nylon frames and metal mechanisms. This development program was initiated for the purpose of reducing vehicle weight while increasing the reliability and safety of the front seats. This paper will review the material and process selection decision, a design overview, the performance criteria and the results of tests performed on the injection molded front seats.
Technical Paper

RTM Body Panels for Viper Sports Car

1993-03-01
930468
Resin transfer molding (RTM) is the process of choice for the Body Panels of the Viper Sports car. The objective of this paper is to outline the reasons for the choice of RTM, and discuss development of technology for Class A surfaces and the paint system. Accomplishments to date and finally the work yet to be completed will also be defined. Conclusions from the work to date indicate that the RTM process enables a reduction in vehicle development time through faster prototypes and tool build times and that high quality, Class A surfaces can be successfully achieved even with epoxy tools. Additional work is ongoing to reduce cycle times and finishing costs, and to improve the in-process dimensional stability.
Technical Paper

Dodge Ram Pickup Vehicle: From Human Factors Development to Production Intent Metal Assembly

1993-11-01
932988
To evaluate and refine interior architecture of the new Dodge Ram pickup truck three years before production, a road worthy interior package validation buck was built using a fiberglass body shell. Molds for the shell were made using CAD/CAM techniques. Advanced CAD/CAM techniques were used to build the interior buck of a subsequent model from individual panels molded in carbon fiber. This buck also included inner structural panels and interior trim components taken from CAD data. For this and subsequent new vehicle programs, refinement of construction techniques allows the bucks to serve as aids in product design and manufacturing feasibility studies.
Technical Paper

Chrysler 8.0-Liter V-10 Engine

1993-11-01
933033
Chrysler Corporation has developed an 8.0-liter engine for light truck applications. Numerous features combine to produce the highest power and torque ratings of any gasoline-fueled light truck engine currently available while also providing commensurate durability. These features include: a deep-skirt ten-cylinder 90° “V” block, a Helmholtz resonator intake manifold that enhances both low and mid-range torque, light die cast all-aluminum pistons for low vibration, a unique firing order for smooth operation, a “Y” block configuration for strength and durability, a heavy duty truck-type thermostat to control warm up, and a direct ignition system.
Technical Paper

Body-in-White Prototype Process in Chrysler's Jeep/Truck Platform

1993-11-01
933038
Chrysler Corporation's Jeep and Truck platform implemented a new design and prototype process for the body-in -white of a new pickup truck. A team approach achieved concurrent body design, stamping die design, assembly process development, and assembly tooling development. The first domestic US industry use of a 100% electronic design and release system was instrumental in the process. The new process produced a prototype body-in-white on time at 95 WBVP (weeks before volume production) with the highest level of production-intent components ever achieved within Chrysler at this stage of development.
Technical Paper

Inadvertent Air Bag Sensor Testing for Off-Road Vehicles

1993-11-01
933020
This paper presents the development of a test procedure for evaluation of inadvertent deployment of air bags. The methodology and early development of the procedure is discussed along with additional criteria thought to be required for trucks and sport utility vehicles. Tests conducted address severe off-road use in relation to air bag sensing systems. Data is collected from accelerometers. After worst case test conditions are identified (examples include rough road, snow plowing and jerk towing events), the data is analyzed and comparisons for design decisions can be made.
Technical Paper

Carbon and Sulfur Effects on Performance of Microalloyed Spindle Forgings

1993-03-01
930966
Five heats of vanadium-microalloyed steel with carbon contents from 0.29% to 0.40% and sulfur contents from 0.031% to 0.110% were forged into automotive spindles and air cooled. Three of the steels were continuously cast whereas the other two were ingot cast. The forged spindles were subjected to microstructural analysis, mechanical property testing, full component testing and machinability testing. The microstructures of the five steels consisted of pearlite and ferrite which nucleated on prior austenite grain boundaries and predominantly on intragranularly dispersed sulfide inclusions of the resulfurized grades. Ultimate tensile strengths and room temperature Charpy V-notch impact toughness values were relatively insensitive to processing and compositional variations. The room temperature tensile and room-temperature impact properties ranged from 820 MPa to 1000 MPa (120 to 145 ksi) and from 13 Joules to 19 Joules (10 to 14 ft-lbs), respectively, for the various steels.
Technical Paper

Validation of Computational Vehicle Windshield De-Icing Process

1994-03-01
940600
This study is a joint development project between Chrysler Corporation and CFD Research Corporation. The objective of this investigation was to develop a 3D computational flow and heat transfer model for a vehicle windshield de-icing process. The windshield clearing process is a 3D transient, multi-medium, multi-phase heat exchange phenomenon in connection with the air flow distribution in the passenger compartment. The transient windshield de-icing analysis employed conjugate heat transfer methodology and enthalpy method to simulate the velocity distribution near the windshield inside surface, and the time progression of ice-melting pattern on the windshield outside surface. The comparison between the computed results and measured data showed very reasonable agreement, which demonstrated that the developed analysis tool is capable of simulating the vehicle cold room de-icing tests.
Technical Paper

Experimental and Computer Simulation Analysis of Transients on an Automobile Communication Bus

1995-02-01
950038
Voltage and current surges are a major concern when it comes to ensuring the functional integrity of electrical and electronic components and modules in an automobile system. This paper presents a computer simulation study for analyzing the effect of high voltage spikes and current load dump on a new Integrated Driver/Receiver (IDR) IC, currently being developed for a J1850 Data Communication Bus in an automobile. It describes the modeling and simulation of the protection structure proposed for the device. The simulation study yields a prediction of current and voltage capability of the protection circuit based on thermal breakdown and transient responses of the circuit. Two levels of modeling, namely, the behavioral level model and the component level model, are used to generate the simulation results. Experimental data will be acquired and used to validate the simulation model when the actual device becomes available.
Technical Paper

Assessing Design Concepts for NVH Using HYFEX (Hybrid Finite Element/Experimental) Modeling

1995-05-01
951249
This paper outlines several methodologies which use finite element and experimental models to predict vehicle NVH responses. Trimmed body experimental modal subsystem models are incorporated into the finite element system model to evaluate engine mounting systems for low frequency vibration problems. Higher frequency noise issues related to road input are evaluated using experimentally derived acoustic transfer functions combined with finite element subsystem model responses. Specific examples of system models built to simulate idle shake and road noise are given. Applications to engine mounting, suspension design, and body structure criteria are discussed.
Technical Paper

Refinement of the Interior Sound Quality of Chrysler's Dodge and Plymouth

1995-05-01
951309
The low noise and linear sound level characteristics of passenger vehicles are receiving increased scrutiny from automotive journalists. A linear noise level rise with increasing engine rpm is the first basic aspect of insuring an acceptable vehicle interior engine noise sound quality. In a typical case of structural response to engine vibration input, interior noise begins to rise with rpm, remains constant or even drops as the engine continues to accelerate, and then exhibits a noise period corresponding to the structure's natural frequency. Frequently this nonlinearity is bothersome to the customer. During the development process, Chrysler's Dodge and Plymouth Neon exhibited just such a nonlinear rise in noise level, heard within the passenger compartment, when the vehicle was accelerated through 4200 rpm.
Technical Paper

Achieving Dent Resistance Improvements and Weight Reduction Through Stamping Process Optimization and Steel Substitution

1996-02-01
960025
Resistance to dents and dings, caused by plant handling and in-service use, is generally recognized as an important performance requirement for automotive outer body panels. This paper examines the dent resistance improvements that can be achieved by maximizing surface stretch, through adjustments to the press settings, and substitution of a higher strength steel grade. Initially, the stamping process was optimized using the steel supplied for production: a Ti/Nb-stabilized, ultra low carbon (ULC) grade. The stamping process was subsequently optimized with a Nb-stabilized, rephosphorized ULC steel, at various thicknesses. The formed panels were evaluated for percent surface stretch, percent thinning, in-panel yield strength after forming, and dent performance. The results showed that dent resistance can be significantly improved, even at a reduced steel thickness, thus demonstrating a potential for weight savings.
Technical Paper

Hydrogen Embrittlement in Automotive Fastener Applications

1996-02-01
960312
Fastener failure due to hydrogen embrittlement is of significant concern in the automotive industry. These types of failures occur unexpectedly. They may be very costly to the automotive company and fastener supplier, not only monetarily, but also in terms of customer satisfaction and safety. This paper is an overview of a program which one automotive company initiated to minimize hydrogen embrittlement in fasteners. The objectives of the program were two-fold. One was to obtain a better understanding of the hydrogen embrittlement phenomena as it relates to automotive fastener materials and processes. The second and most important objective, was to eliminate hydrogen embrittlement failures in vehicles. Early program efforts concentrated on a review of fastener applications and corrosion protection systems to optimize coated fasteners for hydrogen embrittlement resistance.
Technical Paper

Preferred Design for Recycling Practices for Bumper Fascia Systems

1997-02-24
970419
With the increasing demand to improve recyclability of automobiles worldwide the Vehicle Recycling Partnership (VRP) a cooperative effort among Chrysler, Ford and General Motors has been formed. The VRP has been developing preferred practices for improvement of recyclability for future vehicle subsystems. These preferred practices are intended to assist engineers and designers in improving recyclability without impairing the performance of the subsystem. This paper discusses the practices of specific design for recycling of plastic bumper fascia systems and what the designer should consider in developing a design to improve and maximize recyclability.
Technical Paper

Advancements in RRIM Fascia Application Provide Cost Competitiveness While Meeting Performance Requirements

1997-02-24
970482
The commercial validation of a optimized RRIM polyurethane substrate with a novel barrier coat for fascia applications is reviewed which creates cost competitiveness to thermoplastic olefins (TPO), without sacrificing performance. Meeting fascia performance requirements with thinner and lighter RRIM materials containing recyclate and the subsequent application of a barrier coat eliminating the traditional primecoat cycle was investigated.
Technical Paper

Impact Response of Foam: The Effect of the State of Stress

1996-11-01
962418
The Finite Element predictions of the physical response of foams during impact by a rigid body (such as, the Hybrid III head form) is determined by material law equations generally approximated based on the theory of elastoplasticity. However, the structural aspect of foam, its discontinuous nature, makes it difficult to apply the laws of continuum mechanics and construct constitutive equations for foam-like material. One part of the problem relates to the state of stress. In materials such as steel, the state of hydrostatic stress does not affect the stress strain behavior under uniaxial compression or tension in plastic regime. In other words, when steel is subject to hydrostatic pressures the stress strain characteristic can be predicted from a uniaxial test. However, if the stresses acting on a section of foam are triaxial, the response of a head-form may be different than predicted from uniaxial test data.
X