Refine Your Search

Topic

Author

Search Results

Technical Paper

Life Cycle Management of Hydraulic Fluids and Lubricant Oils at Chrysler

1998-11-30
982221
A systematic life cycle management (LCM) approach has been used by Chrysler Corporation to compare existing and alternate hydraulic fluids and lubricating oils in thirteen classifications at a manufacturing facility. The presence of restricted or regulated chemicals, recyclability, and recycled content of the various products were also compared. For ten of the thirteen types of product, an alternate product was identified as more beneficial. This LCM study provided Chrysler personnel with a practical purchasing tool to identify the most cost effective hydraulic fluid or lubricant oil product available for a chosen application on an LCM basis.
Technical Paper

Reliability Analysis of Data with No Failure from Fleet and Proving Ground Endurance Tests

1992-02-01
920773
The reliability of an electronic sensor in the automotive applications is assessed using data from Fleet Test and proving ground Vehicle Endurance test. These nonfailure data are multiply censored at different mileage. Reliability analysis of data with no failure is rarely discussed in most reliability literature. This paper applies the Weibull maximum likelihood analysis based on known values of the Weibull shape parameter to extract useful reliability information. The well-known Weibayes and Weibest methods are subsets of the discussed approach. The sensitivity of the change of reliability levels over a range of Weibull shape parameter values is also examined in our case. The Huang-Porter (1991) approach of obtaining a reliability lower bound regardless of the Weibull shape parameter values is also applied and its potential of practical application is discussed. Practical limitations of all methods are discussed.
Technical Paper

Running Loss Test Procedure Development

1992-02-01
920322
A running loss test procedure has been developed which integrates a point-source collection method to measure fuel evaporative running loss from vehicles during their operation on the chassis dynamometer. The point-source method is part of a complete running loss test procedure which employs the combination of site-specific collection devices on the vehicle, and a sampling pump with sampling lines. Fugitive fuel vapor is drawn into these collectors which have been matched to characteristics of the vehicle and the test cell. The composite vapor sample is routed to a collection bag through an adaptation of the ordinary constant volume dilution system typically used for vehicle exhaust gas sampling. Analysis of the contents of such bags provides an accurate measure of the mass and species of running loss collected during each of three LA-4* driving cycles. Other running loss sampling methods were considered by the Auto-Oil Air Quality Improvement Research Program (AQIRP or Program).
Technical Paper

Analyzing Vibrations in an IC Engine Valve Train

1998-02-23
980570
This study analyzes the vibration characteristics of the valve train of a 2.0L SOHC Chrysler Corp. Neon engine over a range of operating speeds to investigate and demonstrate the advantages and limitations of various dynamic measurements such as displacement, velocity, and acceleration in this application. The valve train was tested in a motoring fixture at speeds of 500 to 3500 camshaft rpm. The advantages of analyzing both time and frequency domain measurements are described. Both frequency and order analysis were done on the data. The theoretical order spectra of cam displacement and acceleration were computed and compared to the experimental data. Deconvolution was used to uncover characteristic frequencies of vibration in the system. The theoretical cam acceleration spectrum was deconvolved from measured acceleration spectra to reveal the frequency response function of the follower system.
Technical Paper

Inadvertent Air Bag Sensor Testing for Off-Road Vehicles

1993-11-01
933020
This paper presents the development of a test procedure for evaluation of inadvertent deployment of air bags. The methodology and early development of the procedure is discussed along with additional criteria thought to be required for trucks and sport utility vehicles. Tests conducted address severe off-road use in relation to air bag sensing systems. Data is collected from accelerometers. After worst case test conditions are identified (examples include rough road, snow plowing and jerk towing events), the data is analyzed and comparisons for design decisions can be made.
Technical Paper

Network I/O and System Considerations

1995-02-01
950036
The J1850 bus requirements promote an unique and well characterized physical layer behavior developed through the learning curve of previous multiplex solutions. Design requirements such as: 1) Reliably interconnecting all of the vehicle's most complex modules, 2) Consistently withstanding the vehicle's harsh environment, and 3) Meeting SAE's functionality requirements, were all a formidable task to achieve. This paper will highlight the path taken to achieve a J1850 Bus interface which successfully met all of the design and functional goals. Chrysler's C2D insights will be discussed and related to goals for J1850. Other design considerations will also be discussed such as EMC issues, custom test equipment, and vehicle and component testability. In turn, silicon processes with special structures and topologies will be discussed relating the specific design with the needed electrical behavior. The HIP7020 J1850 BUS TRANSCEIVER I/O for MULTIPLEX WIRING accomplishes these requirements.
Technical Paper

OPNET J1850 Network Simulator

1995-02-01
950037
MIL 3's OPNET simulator was used to model Chrysler's J1850 bus. Modeled were both J1850 bus characteristics and those portions of control modules (e.g., the engine controller) which communicate on the bus. Current Chrysler control module algorithms and proposed Chrysler J1850 message formats were used to design the control module models. The control module models include all messages which are transmitted at fixed intervals over the J1850 bus. The effects of function-based messages (e.g., messages to be transmitted on a particular sensor or push-button reading) on system load were investigated by transmitting an additional message with a fixed, relatively high priority at 50 millisecond intervals.
Technical Paper

Reducing Cold-Start Emissions by Catalytic Converter Thermal Management

1995-02-01
950409
Vacuum insulation and phase-change thermal storage have been used to enhance the heat retention of a prototype catalytic converter. Storing heat in the converter between trips allows exhaust gases to be converted more quickly, significantly reducing cold-start emissions. Using a small metal hydride, the thermal conductance of the vacuum insulation can be varied continuously between 0.49 and 27 W/m2K (R-12 to R-0.2 insulation) to prevent overheating of the catalyst. A prototype was installed in a Dodge Neon with a 2.0-liter engine. Following a standard preconditioning and a 23-hour cold soak, an FTP (Federal Test Procedure) emissions test was performed. Although exhaust temperatures during the preconditioning were not hot enough to melt the phase-change material, the vacuum insulation performed well, resulting in a converter temperature of 146°C after the 23-hour cold soak at 27°C.
Technical Paper

Development of a Rubber-Like Headform Skin Model for Predicting the Head Injury Criterion (HIC)

1995-02-01
950883
This paper describes the development of a rubber-like skin Finite Elements Model (FEM) for the Hybrid III headform and an experimental method to determine its material properties. The finite element modeling procedures, using material parameters derived from tests conducted on the headform skin (rubber) material, are described. Dynamic responses and computations of HIC using the developed headform model show that an Elastic-Plastic Hydrodynamic (EPH) material model of the rubber can be used for headform impact simulations. The results obtained from the headform simulation using an EPH rubber material model and drop tower tests of the headform on both a rigid and a deformable structure will be compared, in order to show the applicability of the EPH model.
Technical Paper

Analysis of the Pelvis-Chest Interactions in Hybrid III

1995-02-01
950663
The interaction ILLEGIBLEf the chest of the Hybrid III dummy with the air bag restrILLEGIBLEt system during a crash is complex. Forces applied to one ILLEGIBLEmponent of the dummy can generate an unexpected response in a distal part. Motion, both linear and angular, of the pelvis during impact can create an enigmatic spike in the acceleration of the chest. Because significant changes in the chest acceleration response can affect the development of an airbag system, this pelvis-chest interaction is cause for concern. The factors that appear to affect the chest acceleration spike as a result of the pelvis-chest interaction are: the mass moment of inertia of the pelvis, the interaction of the pelvis with the femur, the characteristic of the lumbar spine, and the differential velocity of the pelvis with respect to the chest.
Technical Paper

Changes in Reliability During the Design and Development Process of a Vehicle's Electrical/Electronic Systems

1995-02-01
950826
The changes in reliability of the Electrical/Electronic Systems of a vehicle-line during its early design and development engineering processes have been studied. A computerized vehicle failure tracking system was used to provide results from several stages of early development vehicle testing at the proving grounds. The data were analyzed using a software program that assumes that failures in a repairable system, such as a car, occur as a nonhomogeneous Poisson process. Results suggest that, under normal circumstances, a significant and quantitative improvement in reliability is achievable as the system or component design progresses through the early design and development processes. This also provides a means of predicting future system(s) reliability when the system(s) is in production.
Technical Paper

Federal Test Procedure Emissions Test Results from Ethanol Variable-Fuel Vehicle Chevrolet Luminas

1996-05-01
961092
The first round of Federal Test Procedure (FTP) emissions testing of variable-fuel ethanol vehicles from the U.S. Federal fleet was recently completed. The vehicles tested include 21 variable-fuel E85 1992 and 1993 Chevrolet Lumina sedans and an equal number of standard gasoline Luminas. Results presented include a comparison of regulated exhaust and evaporative emissions and a discussion of the levels of air toxics, as well as the calculated ozone-forming potential of the measured emissions. Two private emissions laboratories tested vehicles taken from the general population of Federal fleet vehicles in the Washington, D.C., and Chicago metropolitan regions. Testing followed the standard U.S. Environmental Protection Agency's FTP and detailed fuel changeover procedures as developed in the Auto/Oil Air Quality Improvement Research Program.
Technical Paper

FTP Emissions Test Results from Flexible-Fuel Methanol Dodge Spirits and Ford Econoline Vans

1996-05-01
961090
The first round of emissions testing of flexible fuel methanol vehicles from the U.S. federal fleet was completed in 1995. The vehicles tested include 71 flexible fuel M85 1993 Dodge Spirits, 16 flexible fuel 1994 M85 Ford Econoline Vans, and a similar number of standard gasoline Dodge Spirits and E150 Ford Econoline Vans. Results presented include a comparison of regulated exhaust and evaporative emissions and a discussion of the levels of air toxins, and the ozone-forming potential (OFP) of the measured emissions. Three private emissions laboratories tested vehicles taken from the general population of federal fleet vehicles in the Washington D.C., New York City, Detroit, Chicago, and Denver metropolitan regions. Testing followed the standard U.S. Environmental Protection Agency's Federal Test Procedures (FTPs) and detailed fuel changeover procedures as developed in the Auto/Oil Air Quality Improvement Research Program.
Technical Paper

Round 1 Emissions Test Results from Compressed Natural Gas Vans and Gasoline Controls Operating in the U.S. Federal Fleet

1996-05-01
961091
The first round of emissions testing of light-duty alternative fuel vehicles placed in the U. S. federal fleet under the provisions of the Alternative Motor Fuels Act was recently completed. This undertaking included 75 Dodge B250 vans, of which 37 were dedicated compressed natural gas models, and 38 were standard gasoline controls. Data were collected on regulated exhaust emissions using the federal test procedures, and on a number of other quantities, through a statistically controlled program of investigation. Fuel economy results were also recorded. All test vehicles were operated in routine federal service activities under normal working conditions, adhering as closely as possible to Chrysler's prescribed maintenance schedules. The data analysis conducted thus far indicates that the compressed natural gas vehicles exhibit notably lower regulated exhaust emissions, on average, than their gasoline counterparts, and that these values are well within U.S.
Technical Paper

The Effects of Oxygen-Enriched Intake Air on FFV Exhaust Emissions Using M85

1996-05-01
961171
This paper presents the results of emission tests of a flexible fuel vehicle (FFV) powered by an SI engine, fueled by M85, and supplied with oxygen-enriched intake air containing nominal 21%, 23%, and 25% oxygen (by volume). Emission data were collected by following the standard federal test procedure (FTP) and U.S. Environmental Protection Agency's (EPA's) “off-cycle” test EPA-REP05. Engine-out total hydrocarbons (THCs) and unburned methanol were considerably reduced in the entire FTP cycle when the oxygen content of the intake air was either 23% or 25%. However, CO emissions did not vary appreciably, and NOx emissions were higher. Formaldehyde emissions were reduced by about 53% in bag 1, 84% in bag 2, and 59% in bag 3 of the FTP cycle when 25% oxygen-enriched intake air was used.
Technical Paper

Plastic Material Separation on Vehicle Subsystems

1997-02-24
970414
Hand dismantling of certain automotive parts has been an accepted process to remove high value materials, but in large scale recycling this may not be economical. In plastics, a pure non contaminated material stream is critical for maintaining high material values and this means designing plastic parts that can be machine separated. One candidate for separating the plastics in vehicle subsystems such as instrument panels and door trim panels is density separation. In order to better understand what processes are required to develop design requirements for automated plastic separation methods Chrysler and the Vehicle Recycling Partnership have undertaken a major materials separation study with MBA Polymers. In this paper, we describe the material separation methods and the application of these methods to three automotive interior assemblies.
Technical Paper

Using Life Cycle Management to Evaluate Lead-Free Electrocoat‡

1997-02-24
970696
Environmental costs are a delayed financial burden that result from product decisions made early in the product life cycle--early material choices may create regulatory and waste management costs that were not factored into the acquisition cost. This paper outlines a step-wise approach to determine decision points; environmental, health, safety and recycling (EHS&R) cost drivers that affect decisions; and sources of information required to conduct a Life Cycle Management (LCM) review. Additionally, how LCM fits into the larger concurrent engineering framework is illustrated with an electrocoat primer example. Upstream and downstream supply chain processes are reviewed, as well as organizational challenges that affect the decision process.
Technical Paper

The Processes and Technologies Used in the Design, Build, and Test of the Dodge Stratus Super Touring Car

1996-12-01
962505
Chrysler is a company run by automotive enthusiasts, and its motorsports programs are an integral part of the company's corporate, brand, and product development process. Chrysler's motorsports programs are executed from within its Platform Team system by the same engineers, using the same processes and facilities as production vehicle programs. This results in teaching and inspiring engineers, designers, and technicians, as well as providing genuine technical benefits to the company. This paper tells the “how” story of the design, build, and test of the Dodge Stratus Super Touring Car. Detailed results have been purposely omitted from the paper due to the competitive nature of motor racing.
Technical Paper

Comparison of Energy Management Materials for Head Impact Protection

1997-02-24
970159
Energy management materials are widely used in automotive interiors in instrument panel, knee bolster, and door absorber applications to reduce the risk of injury to an occupant during a crash. Automobile manufacturers must meet standards set by the National Highway Traffic Safety Administration (NHTSA) that identify maximum levels of injury to an occupant. The recent NHTSA upgrade to the Federal Motor Vehicle Safety Standard (FMVSS) 201 test procedure(1) for upper interior head impact protection has prompted energy management materials' use in several new areas of affected vehicles. While vehicle evaluations continue, results to date show that energy management foams can be effective in reducing the head injury criterion [HIC(d)] to acceptable government and OEM levels.
Technical Paper

Automated Test Request and Data Acquisition System for Vehicle Emission Testing

1997-02-24
970273
Due to new regulations, emissions development and compliance testing have become more complex. The amount of data acquired, the number of test types, and the variety of test conditions have increased greatly. Due to this increase, managing test information from request to analysis of results has become a critical factor. Also, automated test result presentation and test storage increases the value and quality of each test. This paper describes a computer system developed to cope with the increasing complexity of vehicle emission testing.
X