Refine Your Search

Topic

Search Results

Technical Paper

Validation of Eulerian Spray Concept coupled with CFD Combustion Analysis

2007-09-16
2007-24-0044
The main objective of engine 3D CFD simulation is nowadays the support for combustion design development. New combustion concepts (e.g. Low Temperature Combustion, HCCI, multiple injection strategies …) could be analyzed and predicted through detailed thermodynamical computation. To achieve this aim many simulation tools are needed: each of them has to be capable to reproduce the sensitivities of combustion design parameters through physically based models. The adopted approach consists of the coupling of different models for 3D-nozzle flow, orifice-resolved spray formation in Eulerian coordinates and combustion. The advantages of the method will be proofed on an operative DI-diesel truck engine case, run with different nozzle geometries.
Technical Paper

Heavy Truck Frontal Crash Protection System Development

2007-10-30
2007-01-4289
Heavy trucks are produced with a great variety of vehicle configurations, operate over a wide range of gross vehicle weight and sometimes function in extreme duty environments. Frontal crashes of heavy trucks can pose a threat to truck occupants when the vehicle strikes another large object such as bridge works, large natural features or another heavy-duty vehicle. Investigations of heavy truck frontal crashes indicate that the factors listed above all affect the outcome for the driver and the resulting damage to the truck Recently, a new chassis was introduced for on-highway heavy truck models that feature frontal airbag occupant protection. This introduction presented an opportunity to incorporate the knowledge gained from crash investigation into the process for developing the crash sensor's parameter settings.
Technical Paper

The Influence of Rotating Wheels on Vehicle Aerodynamics - Numerical and Experimental Investigations

2007-04-16
2007-01-0107
Investigations of the aerodynamic influence of rotating wheels on a simplified vehicle model as well as on a series production car are presented. For this research CFD simulations are used together with wind tunnel measurements like LDV and aerodynamic forces. Several wheel rim geometries are examined in stationary and in rotating condition. A good agreement could be achieved between CFD simulations and wind tunnel measurements. Based on the CFD analysis the major aerodynamic mechanisms at rotating wheels are characterized. The flow topology around the wheels in a wheel arch is revealed. It is shown, that the reduction of drag and lift caused by the wheel rotation on the isolated wheel and the wheel in the wheel arch are based on different effects of the airflow. Though the forces decrease at the front wheel due to the wheel rotation locally, the major change in drag and lift happens directly on the automotive body itself.
Technical Paper

Simulation Of NOx Storage and Reduction Catalyst: Model Development And Application

2007-04-16
2007-01-1117
To fulfill future emission standards for diesel engines, combined after-treatment systems consisting of different catalyst technologies and diesel particulate filters (DPF) are necessary. For designing and optimizing the resulting systems of considerable complexity, effective simulation models of different catalyst and DPF technologies have been developed and integrated into a common simulation environment called ExACT (Exhaust After-treatment Components Toolbox). This publication focuses on a model for the NOx storage and reduction catalyst as a part of that simulation environment. A heterogeneous, spatially one-dimensional (1D), physically and chemically based mathematical model of the catalytic monolith has been developed. A global reaction kinetic approach has been chosen to describe reaction conversions on the washcoat. Reaction kinetic parameters have been evaluated from a series of laboratory experiments.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 2: Impact of Fuel Properties on HCCI Combustion

2008-10-06
2008-01-2404
A broad range of diesel, kerosene, and gasoline-like fuels has been tested in a single-cylinder diesel engine optimized for advanced combustion performance. These fuels were selected in order to better understand the effects of ignition quality, volatility, and molecular composition on engine-out emissions, performance, and noise levels. Low-level biofuel blends, both biodiesel (FAME) and ethanol, were included in the fuel set in order to test for short-term advantages or disadvantages. The diesel engine optimized in Part 1 of this study included cumulative engine hardware enhancements that are likely to be used to meet Euro 6 emissions limits and beyond, in part by operating under conditions of Homogeneous Charge Compression Ignition (HCCI), at least over some portions of the speed and load map.
Technical Paper

Flow around an Isolated Wheel - Experimental and Numerical Comparison of Two CFD Codes

2004-03-08
2004-01-0445
This paper presents velocity and pressure measurements obtained around an isolated wheel in a rotating and stationary configuration. The flow field was investigated using LDA and a total pressure probe in the model scale wind tunnel at IVK/FKFS. Drag and lift were determined for both configurations as well as for the wheel support only. These results were used as a reference for comparing numerical results obtained from two different CFD codes used in the automotive industry, namely STAR-CD™ and PowerFLOW™. The comparison gives a good overall agreement between the experimental and the simulated data. Both CFD codes show good correlation of the integral forces. The influence of the wheel rotation on drag and lift coefficients is predicted well. All mean flow structures which can be found in the planes measured with LDA can be recognized in the numerical results of both codes. Only small local differences remain, which can be attributed to the different CFD codes.
Technical Paper

Correction of Nozzle Gradient Effects in Open Jet Wind Tunnels

2004-03-08
2004-01-0669
In open jet wind tunnels with high blockage ratios a sharp rise in drag is observed for models approaching the nozzle exit plane. The physical background for this rise in drag will be analyzed in the paper. Starting with a basic analysis of the dependencies of the effect on model and wind tunnel properties, the key parameters of the problem will be identified. It will be shown using a momentum balance and potential flow theory that interaction between model and nozzle exit can result in significant tunnel-induced gradients at the model position. In a second step, a CFD-based investigation is used to show the interaction between nozzle exit and a bluff body. The results cover the whole range between open jet and closed wall test section interaction. The model starts at a large distance from the nozzle, then moves towards the nozzle, enters the nozzle and is finally completely inside the nozzle.
Technical Paper

Effects Causing Untripped Rollover of Light Passenger Vehicles in Evasive Maneuvers

2004-03-08
2004-01-1057
Accident statistics show that rollover accidents contribute to a large proportion of fatal traffic accidents in the U.S.. In the past it has been documented that some light passenger cars showed tendencies to roll over in evasive lane change maneuvers. In 1997, a newly developed mini van rolled over in a severe double lane change test called “moose-test”. Recently (2001), a new SUV showed similar tendencies in the Consumers Union Short Course test. It is not immediately clear why these evasive test maneuvers are so strongly related to untripped rollover of light passenger vehicles. Therefore, the goal of current research is to understand the circumstances and effects causing modern passenger vehicles to roll over in evasive maneuvers on the road. This paper discusses research activities concerning the following questions: How do critical steering strategies lead to untripped rollover? Are resonant frequencies excited during maneuvers leading to rollover?
Technical Paper

Active Body Control (ABC) The DaimlerChrysler Active Suspension and Damping System

2002-10-21
2002-21-0054
Suspension systems have a major effect on the handling characteristics of a vehicle, particularly ride comfort and handling safety, and thus substantially determine its character. Their increasing significance is reflected by the greater value that ever more demanding customers attribute to the properties ride comfort and handling safety. Now that the potential of conventional, passive systems is largely exhausted, adaptive and active systems open up new possibilities, e.g.: the suppression of rolling and pitching movements, handling and ride height independent of load, handling characteristics and ride height adaptable to situation and customer requirement. The DaimlerChrysler active suspension and damping system (Active Body Control – ABC) manages to resolve the conflict of aims between handling safety and ride comfort which afflicts conventional fixed suspension systems, and as a result offers greater freedom of layout whilst enabling optimization of both target criteria.
Technical Paper

Impact of Future Fuels

2002-10-21
2002-21-0073
The likely transition from today's conventional to future alternative fuels will be discussed. It will be shown that in the very long term renewable fuels might be the most promising road fuels with respect to low CO2 emissions. In the short and medium term, however, liquid alternative fuels will prevail being produced initially from natural gas and later increasingly from biomass. Methanol, Ethanol, GTL Hydrocarbons and other fuels are still under study since lowest WTW CO2 emissions and overall system costs are not yet clarified. The availability of alternative fuels in large quantities will depend on the costs for production and infra-structure, and not least of all, on the market benefits of the resulting fuel / power train systems in a holistic assessment. Cost trends for conventional and alternative fuels will be discussed.
Technical Paper

Development and Evaluation of a Numerical Simulation Strategy Designed to Support the Early Stages of the Aerodynamic Development Process

2002-03-04
2002-01-0571
In order to fulfill the need for an efficient and reliable computational method for the aerodynamic optimization of passenger cars, a numerical simulation strategy has been developed at DaimlerChrysler in Stuttgart. The simulation strategy consists of surface preparation, three dimensional mesh generation, flow simulation using CFD, and post-processing. The method will be applied mainly in the early concept phase of the development process when 1:4 scale models with smooth underbodies are used. In this study SAE-bodies as well as modifications of real car shapes are presented. The paper also discusses which improvements are needed to establish a mainly CFD-based process in the early concept phase.
Technical Paper

Potential of Synthetic Fuels in Future Combustion Systems for HSDI Diesel Engines

2006-04-03
2006-01-0232
In view of limited crude oil resources, alternative fuels for internal combustion engines are currently being intensively researched. Synthetic fuels from natural gas offer a promising interim option before the development of CO2-neutral fuels. Up to a certain degree, these fuels can be tailored to the demands of modern engines, thus allowing a concurrent optimization of both the engine and the fuel. This paper summarizes investigations of a Gas-To-Liquid (GTL) diesel fuel in a modern, post-EURO 4 compliant diesel engine. The focus of the investigations was on power output, emissions performance and fuel economy, as well as acoustic performance, in comparison to a commercial EU diesel fuel. The engine investigations were accompanied by injection laboratory studies in order to assist in the performance analyses.
Technical Paper

Powernet Simulation as a Tool for the Development of a Highly Reliable Energy Supply for Safety Relevant Control Systems in X-By-Wire Vessels in the EU SPARC Project

2006-04-03
2006-01-0115
The EU SPARC Project (Secure Propelled Vehicle with Advanced Redundant Control) has developed a new system architecture that enables effective application of driver assisted systems in an X-by-wire powertrain. A major challenge in the conception of such a system is development of a reliable electrical energy supply. A simulation is the most important tool for enabling the fundamental aspects to work, as for example, a dimensioning of the powernet. This article explains our approach in this SPARC simulation. We provide suggestions through examples of how to find simulation solutions for powernet dimensioning, as well as for the conception and validation of energy management strategies.
Technical Paper

The Powertrain of the All-New Maybach - Comfort and Driving Performance on the Highest Level

2003-03-03
2003-01-0597
One of the world's most noble and high quality automobile brands is being revived: Maybach Aestetics, poise, perfection and technical brilliance founded the reputation of the magnificient Maybach sedans and convertibles, whose “Zeppelin” flagship, with a length of around 5.50 metres, was once the most prestigious German passenger car on the road - “an automobile which fulfills every last desire with refined elegance and power”, as the luxury automobile brand's brochure stated in 1934. DaimlerChrysler now feels obliged to live up to these high standards. As cornerstones of this vehicle concept, focus was placed on the topics of design, comfort, spatial availability, safety, exclusiveness and extra-ordinary performance. A major role was given to the powertrain in order to meet outstanding driving comfort and agility.
Technical Paper

Simulation of a Vehicle Refrigeration Cycle with Dymola/Modelica

2005-04-11
2005-01-1899
Development times in the automotive industry are becoming increasingly shorter. For this reason, design decisions based on simulation results must be made at an early development stage. The dynamic simulation of an automotive refrigeration cycle with Dymola/Modelica as part of the design process will be described in the following paper. The component supplier's expertise as well as the automotive manufacturer's knowledge of vehicle parameters in one simulation platform will also be discussed.
Technical Paper

On Road Testing of Advanced Common Rail Diesel Vehicles with Biodiesel from the Jatropha Curcas plant

2005-10-23
2005-26-356
This paper addresses the use of neat, indigenous biodiesel in advanced Mercedes-Benz passenger cars. Modern, unmodified EU3 Common-Rail diesel engines with second generation common rail technology were used to determine the effects of neat biodiesel on performance and emission characteristics. The biodiesel was made from the seeds of the Jatropha Curcas plant and sourced from the Central Salt and Marine Chemicals Research Institute in Bhavnagar, India. The production of biodiesel and the vehicle tests are part of a PPP project, funded jointly by the DaimlerChrysler AG and the German DEG. The project aims at providing additional jobs and income in rural Indian areas along with reclaiming unused wasteland. The test vehicles were operated for a cumulative 8000 kilometers with an intention to expose the vehicle and fuel to diverse climatic conditions.
Technical Paper

Current Status and Prospects for Gasoline Engine Emission Control Technology - Paving the Way for Minimal Emissions

2000-03-06
2000-01-0856
The background for the development activities of the motor vehicle industry is strongly influenced by lawmakers, with engine development, in particular, coming under increasing pressure from the requirements of emissions legislation. Demands for CO2 reduction and thus corresponding savings in consumption contrast with regulations which call for compliance with extremely low emission levels, featuring the extreme of zero tailpipe emissions, and alternative low emission levels which make accurate measurement a problem even with current analysis technology. An example of such requirements are the SULEV limits of California law. These standards have given rise to a wide variety of emission control concepts, each of which, however, has certain limitations in its application. In the context of this general setting, the paper shows that the phase directly subsequent to cold start should be focused upon if these ambitious targets are to be reached.
Technical Paper

Active Safety of Commercial Vehicles - The European Status

2000-12-01
2000-01-3154
The increase of active safety will demand more and more electronic intelligence, if a drastic optimization of conventional systems is not possible any more. Starting from today's mechatronic systems, the trend leads via tomorrow's smart electronic systems to the future electronic networking of all intelligent vehicle systems. The paper describes the present status of these systems in Europe and the possibilities of increasing the active safety by using electronic intelligence.
Technical Paper

Intelligent Braking Management for Commercial Vehicles

2000-12-01
2000-01-3156
The development of electronic intelligence and the continually increasing intensive knowledge of driving dynamics make it possible nowadays to conceive intelligent vehicle systems and to make such systems available for series production, which are capable of substantially enhancing the active safety of commercial vehicles. Through the implementation of advanced subsystems, which can be integrated as software packages into the basic electronic braking system, it will be possible to expand the possibilities of introducing assistance systems, which are capable of both, helping and relieving the driver from stress in critical situations. The driver will be relieved of all duties which could divert his attention or cause severe stress. As a consequence, the active safety of commercial vehicles will be considerably increased.
Technical Paper

“MBE 4000-A New Engine for the US Class 8 Truck Market”

2000-12-04
2000-01-3457
Due to ever soaring fuel costs and even more stringent emission regulations which require more elaborate technical efforts and unfortunately lead to a negative trend on fuel economy as well, todays and future trucking business is extremely challenged. These facts create an urgent requirement for the engine manufacturer to offer an engine with an optimized cost-benefit-ratio for the trucking business. Mercedes-Benz, as the leader in the European commercial vehicle market - of which e. g. high fuel costs, long maintenance intervals and high engine power-to-weight ratios have always been key characteristics - has developed a new class 8 engine for the US market. The MBE 4000 is a 6 cylinder inline engine in the compact size and low weight category, but due to its displacement of 12,8 liters it offers high performance characteristics like heavier big block engines.
X