Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions

2009-04-20
2009-01-1102
Premixed Charge Compression Ignition (PCCI), a Low Temperature Combustion (LTC) strategy for diesel engines is of increasing interest due to its potential to simultaneously reduce soot and NOx emissions. However, the influence of mixture preparation on combustion phasing and heat release rate in LTC is not fully understood. In the present study, the influence of injection timing on mixture preparation, combustion and emissions in PCCI mode is investigated by experimental and computational methods. A sequential coupling approach of 3D CFD with a Stochastic Reactor Model (SRM) is used to simulate the PCCI engine. The SRM accounts for detailed chemical kinetics, convective heat transfer and turbulent micro-mixing. In this integrated approach, the temperature-equivalence ratio statistics obtained using KIVA 3V are mapped onto the stochastic particle ensemble used in the SRM.
Journal Article

Eulerian CFD Modeling of Coupled Nozzle Flow and Spray with Validation Against X-Ray Radiography Data

2014-04-01
2014-01-1425
This paper implements a coupled approach to integrate the internal nozzle flow and the ensuing fuel spray using a Volume-of-Fluid (VOF) method in the CONVERGE CFD software. A VOF method was used to model the internal nozzle two-phase flow with a cavitation description closed by the homogeneous relaxation model of Bilicki and Kestin [1]. An Eulerian single velocity field approach by Vallet et al. [2] was implemented for near-nozzle spray modeling. This Eulerian approach considers the liquid and gas phases as a complex mixture with a highly variable density to describe near nozzle dense sprays. The mean density is obtained from the Favreaveraged liquid mass fraction. The liquid mass fraction is transported with a model for the turbulent liquid diffusion flux into the gas.
Journal Article

Numerical Simulations of Supersonic Diesel Spray Injection and the Induced Shock Waves

2014-04-01
2014-01-1423
Shock waves have been recently observed in high-pressure diesel sprays. In this paper, three-dimensional numerical simulations of supersonic diesel spray injection have been performed to investigate the underlying dynamics of the induced shock waves and their interactions with the spray. A Volume-of-Fluid based method in the CFD software (CONVERGE) is used to model this multiphase phenomena. An adaptive Mesh Refinement (AMR) scheme is employed to capture the front of the spray and the shock waves with high fidelity. Simulation results are compared to the available experimental observations to validate the numerical procedure. Parametric studies with different injection and ambient conditions are conducted to examine the effect of these factors on the generation of shock waves and their dynamics.
Journal Article

Obtaining Structure-borne Input for Hybrid FEA/SEA Engine Enclosure Models through a Simplified Transfer Path Analysis

2015-06-15
2015-01-2349
Structure-borne inputs to hybrid FEA/SEA models could have significant effects on the model prediction accuracy. The purpose of this work was to obtain the structure-borne noise (SBN) inputs using a simplified transfer path analysis (TPA) and identify the significance of the structure-borne and airborne contributions to the spectator sound power of an engine with enclosure for future modeling references. Force inputs to the enclosure from the engine were obtained and used as inputs to a hybrid engine enclosure model for sound prediction.
Journal Article

CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel

2017-03-28
2017-01-0550
A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty compression-ignition engine with a gasoline-like fuel that has an anti-knock index (AKI) of 58. The primary goal was to design an optimized combustion system utilizing the high volatility and low sooting tendency of the fuel for improved fuel efficiency with minimal hardware modifications to the engine. The CFD model predictions were first validated against experimental results generated using the stock engine hardware. A comprehensive design of experiments (DoE) study was performed at different operating conditions on a world-leading supercomputer, MIRA at Argonne National Laboratory, to accelerate the development of an optimized fuel-efficiency focused design while maintaining the engine-out NOx and soot emissions levels of the baseline production engine.
Journal Article

A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing

2018-04-03
2018-01-0190
A Machine Learning-Genetic Algorithm (ML-GA) approach was developed to virtually discover optimum designs using training data generated from multi-dimensional simulations. Machine learning (ML) presents a pathway to transform complex physical processes that occur in a combustion engine into compact informational processes. In the present work, a total of over 2000 sector-mesh computational fluid dynamics (CFD) simulations of a heavy-duty engine were performed. These were run concurrently on a supercomputer to reduce overall turnaround time. The engine being optimized was run on a low-octane (RON70) gasoline fuel under partially premixed compression ignition (PPCI) mode. A total of nine input parameters were varied, and the CFD simulation cases were generated by randomly sampling points from this nine-dimensional input space. These input parameters included fuel injection strategy, injector design, and various in-cylinder flow and thermodynamic conditions at intake valve closure (IVC).
Journal Article

Residual Stress Distributions in Rectangular Bars Due to High Rolling Loads

2016-04-05
2016-01-0424
In this paper, residual stress distributions in rectangular bars due to rolling or burnishing at very high rolling or burnishing loads are investigated by roll burnishing experiments and three-dimensional finite element analyses using ABAQUS. First, roll burnishing experiments on rectangular bars at two roller burnishing loads are presented. The results indicate the higher burnishing load induces lower residual stresses and the higher burnishing load does not improve fatigue lives. Next, in the corresponding finite element analyses, the roller is modeled as rigid and the roller rolls on the flat surface of the bar with a low coefficient of friction. The bar material is modeled as an elastic-plastic strain hardening material with a nonlinear kinematic hardening rule for loading and unloading.
Journal Article

Numerical Investigation of Two-Phase Flow Evolution of In- and Near-Nozzle Regions of a Gasoline Direct Injection Engine During Needle Transients

2016-04-05
2016-01-0870
This work involves modeling internal and near-nozzle flows of a gasoline direct injection (GDI) nozzle. The Engine Combustion Network (ECN) Spray G condition has been considered for these simulations using the nominal geometry of the Spray G injector. First, best practices for numerical simulation of the two-phase flow evolution inside and the near-nozzle regions of the Spray G injector are presented for the peak needle lift. The mass flow rate prediction for peak needle lift was in reasonable agreement with experimental data available in the ECN database. Liquid plume targeting angle and liquid penetration estimates showed promising agreement with experimental observations. The capability to assess the influence of different thermodynamic conditions on the two-phase flow nature was established by predicting non-flashing and flashing phenomena.
Journal Article

Understanding Hydrocarbon Emissions in Heavy Duty Diesel Engines Combining Experimental and Computational Methods

2017-03-28
2017-01-0703
Fundamental understanding of the sources of fuel-derived Unburned Hydrocarbon (UHC) emissions in heavy duty diesel engines is a key piece of knowledge that impacts engine combustion system development. Current emissions regulations for hydrocarbons can be difficult to meet in-cylinder and thus after treatment technologies such as oxidation catalysts are typically used, which can be costly. In this work, Computational Fluid Dynamics (CFD) simulations are combined with engine experiments in an effort to build an understanding of hydrocarbon sources. In the experiments, the combustion system design was varied through injector style, injector rate shape, combustion chamber geometry, and calibration, to study the impact on UHC emissions from mixing-controlled diesel combustion.
Technical Paper

Investigation of Reynolds Stress Model for Complex Flow Using CONVERGE

2020-04-14
2020-01-1104
The Reynolds stress turbulence model (RSM) has been developed to go beyond the Boussinesq hypothesis and to improve turbulence modeling of flows with significant mean streamline curvature and secondary flow. In this paper the RSM in commercial CFD software CONVERGE is tested for its performance and robustness when applying to complex flows. Several validation cases including flow over flat plate, vortex combustor, diesel engine spray and combustion were selected to test the RSM. The swirling flow in vortex combustor, non-reacting but vaporizing ECN Spray A (free jet) and Sandia small bore diesel engine case are used to demonstrate the benefits of the RSM over the widely used RNG k-epsilon model without model tuning. The vortex combustor case shows the RSM can provide good prediction for strong swirling flow. ECN spray A case was used to demonstrate that the RSM can accurately predict the liquid and vapor penetration lengths of a free jet under diesel engine conditions.
Journal Article

An Applied Approach for Large-Scale Multibody Dynamics Simulation and Machine-Terrain Interaction

2008-04-14
2008-01-1101
Virtual Product Development (VPD) is a key enabler in CAE and depends upon accurate implementation of multibody dynamics. This paper discusses the formulation and implementation of a large-scale multibody dynamics simulation code. In the presented formulation, the joint variables are used as the generalized coordinates and spatial algebra is used to formulate the system equations of motion. Although the presented formulation utilizes the joint variables as the generalized coordinates, closed-loop mechanisms can be easily modeled using impeded constraints. Baumgart stabilization approach is used to eliminate the constraint violations without using the expensive Newton-Raphson iterations. Integrated rigid and flexible body dynamic simulation allows accurate prediction of structural loads, stress, and strains. Both modal and nodal flexible body approaches are discussed in the paper.
Journal Article

A Comprehensive Evaluation of Diesel Engine CFD Modeling Predictions Using a Semi-Empirical Soot Model over a Broad Range of Combustion Systems

2018-04-03
2018-01-0242
Single-cylinder engine experiments and computational fluid dynamics (CFD) modeling were used in this study to conduct a comprehensive evaluation of the accuracy of the modeling approach, with a focus on soot emissions. A semi-empirical soot model, the classic two-step Hiroyasu model with Nagle and Strickland-Constable oxidation, was used. A broad range of direct-injected (DI) combustion systems were investigated to assess the predictive accuracy of the soot model as a design tool for modern DI diesel engines. Experiments were conducted on a 2.5 liter single-cylinder engine. Combustion system combinations included three unique piston bowl shapes and seven variants of a common rail fuel injector. The pistons included a baseline “Mexican hat” piston, a reentrant piston, and a non-axisymmetric piston similar to the Volvo WAVE design. The injectors featured six or seven holes and systematically varied included angles from 120 to 150 degrees and hole sizes from 170 to 273 μm.
Journal Article

Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis

2017-03-28
2017-01-0578
Fuels in the gasoline auto-ignition range (Research Octane Number (RON) > 60) have been demonstrated to be effective alternatives to diesel fuel in compression ignition engines. Such fuels allow more time for mixing with oxygen before combustion starts, owing to longer ignition delay. Moreover, by controlling fuel injection timing, it can be ensured that the in-cylinder mixture is “premixed enough” before combustion occurs to prevent soot formation while remaining “sufficiently inhomogeneous” in order to avoid excessive heat release rates. Gasoline compression ignition (GCI) has the potential to offer diesel-like efficiency at a lower cost and can be achieved with fuels such as low-octane straight run gasoline which require significantly less processing in the refinery compared to today’s fuels.
Journal Article

Effect of Off-Axis Needle Motion on Internal Nozzle and Near Exit Flow in a Multi-Hole Diesel Injector

2014-04-01
2014-01-1426
The internal structure of Diesel fuel injectors is known to have a significant impact on the nozzle flow and the resulting spray emerging from each hole. In this paper the three-dimensional transient flow structures inside a Diesel injector is studied under nominal (in-axis) and realistic (including off-axis lateral motion) operating conditions of the needle. Numerical simulations are performed in the commercial CFD code CONVERGE, using a two-phase flow representation based on a mixture model with Volume of Fluid (VOF) method. Moving boundaries are easily handled in the code, which uses a cut-cell Cartesian method for grid generation at run time. First, a grid sensitivity study has been performed and mesh requirements are discussed. Then the results of moving needle calculations are discussed. Realistic radial perturbations (wobbles) of the needle motion have been applied to analyze their impact on the nozzle flow characteristics.
Technical Paper

CFD Modeling of the Multiphase Flow and Heat Transfer for Piston Gallery Cooling System

2007-10-29
2007-01-4128
Numerical models are used in this study to investigate the oil flow and heat transfer in the piston gallery of a diesel engine. An experiment is set up to validate the numerical models. In the experiment a fixed, but adjustable steel plate is instrumented and pre-heated to a certain temperature. The oil is injected vertically upwards from an underneath injector and impinges on the bottom of the plate. The reduction of the plate temperature is recorded by the thermocouples pre-mounted in the plate. The numerical models are used to predict the temperature history at the thermocouple locations and validated with the experimental data. After the rig model validation, the numerical models are applied to evaluate the oil sloshing and heat transfer in the piston gallery. The piston motion is modeled by a dynamic mesh model, and the oil sloshing is modeled by the VOF (volume of fluid) multiphase model.
Technical Paper

A Comparison of Time-Averaged Piston Temperatures and Surface Heat Flux Between a Direct-Fuel Injected and Carbureted Two-Stroke Engine

1998-02-23
980763
Time-averaged temperatures at critical locations on the piston of a direct-fuel injected, two-stroke, 388 cm3, research engine were measured using an infrared telemetry device. The piston temperatures were compared to data [7] of a carbureted version of the two-stroke engine, that was operated at comparable conditions. All temperatures were obtained at wide open throttle, and varying engine speeds (2000-4500 rpm, at 500 rpm intervals). The temperatures were measured in a configuration that allowed for axial heat flux to be determined through the piston. The heat flux was compared to carbureted data [8] obtained using measured piston temperatures as boundary conditions for a computer model, and solving for the heat flux. The direct-fuel-injected piston temperatures and heat fluxes were significantly higher than the carbureted piston. On the exhaust side of the piston, the direct-fuel injected piston temperatures ranged from 33-73 °C higher than the conventional carbureted piston.
Technical Paper

Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels

2007-04-16
2007-01-0201
Computational fluid dynamic (CFD) simulations that include realistic combustion/emissions chemistry hold the promise of significantly shortening the development time for advanced high-efficiency, low-emission engines. However, significant challenges must be overcome to realize this potential. This paper discusses these challenges in the context of diesel combustion and outlines a technical program based on the use of surrogate fuels that sufficiently emulate the chemical complexity inherent in conventional diesel fuel.
Technical Paper

On Determining the Quality Levels of Engineering Analyses Process - A 6 Sigma Approach

2008-04-14
2008-01-1167
Determining quality levels of analyses process is important in terms of being able to estimate the quality levels. This paper presents an approach based on 6 sigma methodology to estimate the quality levels of engineering analyses. The analyses types covered here are structural and computational fluid dynamics (CFD) types. Three examples covering the analyses types are presented here that show the way quality levels are reported. With the aim of continuous improvement of the analysis process, there is a need to build quality metrics specific to different product types. Future work is aimed to address this need for specific quality metrics.
Technical Paper

Modeling and Simulation of the Drying of Cabin Solid Waste in Long-Term Space Missions

2008-06-29
2008-01-2194
A prototype packed bed convective dryer has been studied for use in an energy-efficient closed air-loop heat-pump drying system for astronaut cabin waste. This paper presents a transient continuum model for the heat and mass transfer between the air and wet ersatz trash in the cylindrical drying vessel. The model is based on conservation equations for energy and moisture applied to the air and solid phases and its formulation includes the unique waste characteristic of having both dry and wet solids. It incorporates heat and mass transfer coefficients for the system measured on an ersatz trash in the dryer vessel, and experimentally determined moisture sorption equilibrium relationship for the wet material. The resulting system of differential equations is solved by the finite-volume method as implemented by the commercial software COMSOL. The validated model will be used in the optimization of the entire closed-loop system consisting of dryer, condenser, and heat-recovery modules.
Technical Paper

A Computational Study of Idealized Bluff Bodies, Wheels, and Vortex Structures in Ground Effect

2008-04-14
2008-01-0327
Results are presented from a study on the use of Computational Fluid Dynamics (CFD) for automotive underbody design. A diffuser-equipped bluff body with endplates was examined in ground effect at varying ride heights in configurations with and without wheels. The study was performed using commercial CFD, Fluent© 6.3.26. CFD data is compared to experimental work done with similar bodies by Cooper et al. [1, 2], George et al. [3, 4], Zhang et al. [5, 6], and others [7, 8, 9]. Emphasis is made on the study of vortex structures in bluff body flow. Various mesh geometries and solvers were explored with computational models designed to operate on single-processor workstations or small networks. Steady-state solutions were modeled for all cases; boundary layers were approximated with wall functions. CFD results for lift coefficient measured within 15-25% of experimental cases, dependent on solver. Qualitative results matched well with experimentally measured flow structures.
X