Refine Your Search

Topic

Author

Search Results

Journal Article

Effect of Spray/Wall Interaction on Diesel Combustion and Soot Formation in Two-Dimensional Piston Cavity

2013-10-15
2013-32-9021
The effects of spray/wall interaction on diesel combustion and soot formation in a two-dimensional piston cavity were studied with a high speed color video camera in a constant volume combustion vessel. The two-dimensional piston cavity was applied to generate the impinging spray flame. In the cavity, the flat surface which plays a role as the cylinder head has a 13.5 degree angle with the injector axis and the impinging point was located 30 mm away from the nozzle tip. Three injection pressures of 100, 150, and 200 MPa and a single hole diesel injector (hole diameter: 0.133mm) were selected. The flame structure and combustion process were examined by using the color luminosity images. Two-color pyrometry was used to measure the line-of sight soot temperature and concentration by using the R and B channels of the color images. The soot mass generated by impinging spray flame is higher than that of the free spray flame.
Journal Article

A Numerical Study on Detailed Soot Formation Processes in Diesel Combustion

2014-10-13
2014-01-2566
This study simulates soot formation processes in diesel combustion using a large eddy simulation (LES) model, based on a one-equation subgrid turbulent kinetic energy model. This approach was implemented in the KIVA4 code, and used to model diesel spray combustion within a constant volume chamber. The combustion model uses a direct integration approach with a fast explicit ordinary differential equation (ODE) solver, and is additionally parallelized using OpenMP. The soot mass production within each computation cell was determined using a phenomenological soot formation model developed by Waseda University. This model was combined with the LES code mentioned above, and included the following important steps: particle inception during which acenaphthylene (A2R5) grows irreversibly to form soot; surface growth with driven by reactions with C2H2; surface oxidation by OH radical and O2 attack; and particle coagulation.
Technical Paper

Droplet Behaviors of DI Gasoline Wall Impinging Spray by Spray Slicer

2020-04-14
2020-01-1152
Owing to the small size of engines and high injection pressures, it is difficult to avoid the fuel spray impingement on the combustion cylinder wall and piston head in Direct Injection Spark Ignition (DISI) engine, which is a possible source of hydrocarbons and soot emission. As a result, the droplets size and distribution are significantly important to evaluate the atomization and predict the impingement behaviors, such as stick, spread or splash. However, the microscopic behaviors of droplets are seldom reported due to the high density of small droplets, especially under high pressure conditions. In order to solve this problem, a “spray slicer” was designed to cut the spray before impingement as a sheet one to observe the droplets clearly. The experiment was performed in a constant volume chamber under non-evaporation condition, and a mini-sac injector with single hole was used.
Journal Article

Diesel Combustion Noise Reduction by Controlling Piston Vibration

2015-04-14
2015-01-1667
It has been required recently that diesel engines for passenger cars meet various requirements, such as low noise, low fuel consumption, low emissions and high power. The key to improve the noise is to reduce a combustion noise known as “Diesel knock noise”. Conventional approaches to reduce the diesel knock are decreasing combustion excitation force due to pilot/pre fuel injection, adding ribs to engine blocks or improving noise transfer characteristics by using insulation covers. However, these approaches have negative effects, such as deterioration in fuel economy and increase in cost/weight. Therefore, modification of engine structures is required to reduce it. We analyzed noise transfer paths from a piston, a connecting rod, a crank shaft to an engine block and vibration behavior during engine operation experimentally, and identified that piston resonance was a noise source.
Journal Article

Unsteady Vehicle Aerodynamics during a Dynamic Steering Action: 2nd Report, Numerical Analysis

2012-04-16
2012-01-0448
Unsteady aerodynamic forces acting on vehicles during a dynamic steering action were investigated by numerical simulation, with a special focus on the vehicles' yaw and lateral motions. Two sedan-type vehicles with slightly different geometries at the front pillar, side skirt, under cover, and around the front wheel were adopted for comparison. In the first report, surface pressure on the body and total pressure behind the front wheel were measured in an on-road experiment. Then the relationships between the vehicles' lateral dynamic motion and unsteady aerodynamic characteristics during cornering motions were discussed. In this second report, the vehicles' meandering motions observed in on-road measurements were modeled numerically, and sinusoidal motions of lateral, yaw, and slip angles were imposed. The responding yaw moment was phase averaged, and its phase shift against the imposed slip angle was measured to assess the aerodynamic damping.
Technical Paper

Direct Simulation for Aerodynamic Noise from Vehicle Parts

2007-08-05
2007-01-3461
Flows around a forward facing step and a fence are simulated on structured grid to estimate aerodynamic noise by using direct simulation. Calculated results of sound pressure level show quantitatively good agreement with experimental results. To estimate aerodynamic noise from 3D complex geometry, a simplified side mirror model is also calculated. Averaged pressure distribution on the mirror surface as well as pressure fluctuations on the mirror surface and ground are simulated properly. However, calculated result of sound pressure level at a location is about 20dB higher than experiment due to insufficient spatial resolution. To capture the propagation of sound waves, more accuracy seems to be required.
Technical Paper

Development of High-Performance PP Masterbatch for Interior Parts

2007-08-05
2007-01-3733
The authors have developed a high-performance talc masterbatch (hereinafter HPTMB) to achieve sufficient flexural modulus and impact resistance at the same time using inexpensive conventional PP as a base resin. Highly compressed fine talc and elastomers were selected as the filler and the impact resistance improver by considering their dispersion in the molded parts. The mixing process was also optimized. In order to stabilize impact resistance after molding, several elastomers were selected based on molecular weights and melting points. The developed HPTMB showed excellent balanced properties for instrument panels using inexpensive conventional PP as a base resin. The HPTMB is applied to the instrument panel of a Mitsubishi mini car. This technology will enable us to reduce the material cost by consolidating automotive interior plastic materials as well as by using available conventional PP.
Technical Paper

Spot Friction Welding of Aluminum to Steel

2007-04-16
2007-01-1703
Spot friction welding (SFW) is a cost-effective spot joining technology for aluminum sheets compared with resistance spot welding (RSW) [1]. In this study, coated mild steel was spot friction welded to 6000 series aluminum using a tool with shoulder diameter of 10 mm and welding conditions of 1500-2000 rpm and time of 5 s. Testing showed that tensile shear strength increased as the solidus temperature of the coating on the steel decreased. Microstructure characterizations of steel/Al joint interfaces showed that zinc from the coatings was incorporated into the stir nuggets and that intermetallic phases may have formed but not in continuous layers. Some Al-Zn oxides that appeared to be amorphous were also found in the joint interfaces.
Technical Paper

Development of plastic strain equalization method for a crash analysis

2000-06-12
2000-05-0198
For a crash analysis using FEM with respect to a structure that is composed of thin plates, we developed a new structure study method (plastic strain equalization method). This method defines the optimality criteria as in the linear analysis of a fully stressed design and indirectly finds an optimal solution. We assume that a structure with both a lightweight and high collapse load should have sufficient strength corresponding to impact loads in each area. This means that at any area the load value and the strength are balanced at a certain value. For the criteria that the plastic strain value is equal over the whole area, a solution can be found by repeating computations. The design variable is the thickness of shell elements and the computation is iterated until plastic strain values are almost equal. In this paper, a structure with both a lightweight and a high collapse load could be optimized by equalizing the plastic strain value.
Technical Paper

NOx-Trap Catalyst Development for Mitsubishi 1.8L GDI™ Application

2003-10-27
2003-01-3078
A new single-brick Ba + alkali metals NOx-Trap catalyst has been developed to replace a two-brick NOx-Trap system containing a downstream three-way catalyst. Major development efforts include: 1) platinum group metals selection for higher HC oxidation with potassium-containing washcoat, 2) alumina and ceria selection, and Rh architecture design for more efficient NOx reduction and 3) NiO to suppress H2S odor. Mitsubishi Motors' 1.8L GDI™ with this Delphi new NOx-Trap catalyst with H2S control achieves J-LEV standard with less cost and lower backpressure compared to the previous model. It is further discovered that incorporation of NiO into the NOx-Trap washcoat is effective for H2S control during sulfur purge but has a negative impact on thermal durability and sulfur resistance. Further study to improve this trade-off has been made and preliminary results of an advanced washcoat design are presented in this paper. Details will be reported in a future publication.
Technical Paper

Development of Titanium Engine Valves for Motorcycles

2003-09-16
2003-32-0033
Recently, it has been expected that titanium alloy valves will be adopted at extremely high rate to motorcycle engines where higher engine performance is required than in automobiles. However, there were difficulties with respect to reliability required for motorcycle engines. The reason for this is that engine valves of motorcycle engines are not only smaller in stem diameter, but also used at a higher maximum engine speed than those of automobile engines. This study is about a development of titanium alloy engine valves that meet reliability requirements in motorcycle engines.
Technical Paper

Trend toward weight reduction of automobile body in Japan

2000-06-12
2000-05-0240
With society demanding automobiles that provide higher fuel efficiency, safety of occupants in collisions and that at the end of their service life can be recycled with low environmental impact, the steel industry is tackling the needs of the automobile industry by developing ever-higher performance steel materials and simulation technologies that can demonstrate the performance of steel materials at the development stage without the need for costly prototype testing. In this paper, weight reduction of automobile body in Japan will be discussed. The main items will be as follows: (1) Development of Automobile Steel Sheets, (2) Materials for Automobile Bodies, (3) Materials and Technologies (Tailored Blanks, Hydroforming and Locally Quenching) for Reducing the Weight of Panels and Reinforcing members, (4) Future Prospects.
Technical Paper

A New Method of Stress Calculation in Spot Welded Joint and Its Application to Fatigue Life Prediction of Actual Vehicle

2003-10-27
2003-01-2809
A method of fatigue life prediction of spot welded joint under multi-axial loads has been developed by fatigue life estimation working groups in the committee on fatigue strength and structural reliability of JSAE. This method is based on the concept of nominal structural stress ( σ ns) proposed by Radaj and Rupp, and improved so that D value is not involved in stress calculation. The result of fatigue life estimation of actual vehicle with nominal structural stress which was calculated through newly developed method had very good correlation with the result of multi-axial loads fatigue test carried out with test piece including high strength steel.
Technical Paper

New 440MPa High-Strength Steel for Vehicle Outer-Panel

2003-10-27
2003-01-2832
New 440MPa class high-strength steel, which had high r-value(1.6) and elongation(38%), was applied to outer-panel for the first time in the world. In this development FEM simulation was carried out to clarify the necessary steel properties, and the production conditions in strip mill were established. 10-kg weight reduction was realized by using this steel.
Technical Paper

Fatigue life prediction for welded steel sheet structures

2003-10-27
2003-01-2878
In this paper the fatigue life of welded steel sheet structures is predicted by using FE-Fatigue, which is one of fatigue analysis software tools on the market, and these predicted results are evaluated by reference to corresponding experimental results. Also, we try to predict these structures by using two fatigue life prediction theories established by the JSAE fatigue and reliability committee to compare prediction results. It was confirmed that spot welds fatigue life predictions agree qualitatively with corresponding experimental results and arc welds fatigue life predictions are in good agreement with corresponding experimental results in cases where the SN curve database is modified appropriately.
Technical Paper

Application of Plasma Welding to Tailor- Welded Blanks

2003-10-27
2003-01-2860
In recent years, improving fuel efficiency and collision safety are important issue. We have worked on a new construction method to develop body structure which is light weight and strong/stiff. We adopt multi type Tailor-Welded Blanks (TWB) which is formed after welding several steel sheets for ATENZA (MAZDA 6), NEW DEMIO (MAZDA 2), and RX-8. This is a technology to consistently improve of such product properties and to reduce costs. Laser welding is a common TWB welding method, but for further equipment cost reductions and productivity improvements, we have developed a higher welding speed and robust plasma welding and introduced this to mass production. We introduce this activity and results in this report.
Technical Paper

Crashworthiness Improvement of the Side Crash by the Work Hardening Effect of Pre-Strained High Strength Steel

2001-10-16
2001-01-3112
In order to examine the compatibility of improvement of crashworthiness with weight saving of automobiles by using high strength steel, a combination analysis of Finite Element Method and Dynamic Mechanical Properties has been established. Material properties used in this analysis have been measured by “one bar method” high velocity tensile tests, which can examine the deformation behavior of materials at a bend crush speed range (∼55km/h). It was confirmed that the strength of steel measured by one bar method was raised remarkably after press and hydro forming of high strength steels. It was also confirmed by FEM analysis and load drop test that absorbed energy of bend crush was improved by pre-strain effect. Further, we proved that absorbed energy of bend crush was also improved by appropriate design of thickness and the ratio of bend span and plate length. These effects are applicable to respective high strength steels.
Technical Paper

Effect of Strengthening Mechanism on Fatigue Properties of Hot-Rolled Sheet Steels

2002-03-04
2002-01-0042
The influence of tensile strength on fatigue strength and the effect of strengthening mechanism on fatigue notch factor were investigated into conventional mild steels, HSLA steels, DP steels and TRIP steels. The grade of studied steels was altered from 440MPa to 780MPa. Not only smooth fatigue specimens with side surface ground and smooth fatigue specimens with laser-cut side surface but also fatigue specimens with a pierced hole were prepared for each of steel sheets. Fatigue tests were conducted in an axial load method. These experiments made it clear that the fatigue limits of smooth specimen increase along the tensile strength approximately independent of strengthening mechanism but those of notched specimen do not necessarily increase along the tensile strength. Namely, fatigue limits of DP steels and TRIP steels with notch increase in proportion to tensile strength although those of HSLA steels with notch do not increase.
Technical Paper

An Analysis of Ambient Air Entrainment into Split Injection D.I. Gasoline Spray by LIF-PIV Technique

2002-10-21
2002-01-2662
Effects of split injection, with a relatively short time interval between the two sprays, on the spray development process, and the air entrainment into the spray, were investigated by using laser induced fluorescence and particle image velocimetry (LIF-PIV) techniques. The velocities of the spray and the ambient air were measured. The cumulative mass of the ambient air entrained into the spray was calculated by using the entrainment velocity normal to the spray boundary. The vortex structure of the spray, formed around the leading edge of the spray, showed a true rotating flow motion at low ambient pressures of 0.1 MPa, whereas at 0.4 MPa, it was not a true rotating flow, but a phenomenon of the small droplets separating from the leading edge of the spray and falling behind, due to air resistance. The development processes of the 2nd spray were considerably different from that of the 1st spray because the 2nd spray was injected into the flow fields formed by the 1st spray.
X