Refine Your Search

Search Results

Viewing 1 to 14 of 14
Journal Article

Pathline Analysis of Full-cycle Four-stroke HCCI Engine Combustion Using CFD and Multi-Zone Modeling

2008-04-14
2008-01-0048
This paper investigates flow and combustion in a full-cycle simulation of a four-stroke, three-valve HCCI engine by visualizing the flow with pathlines. Pathlines trace massless particles in a transient flow field. In addition to visualization, pathlines are used here to trace the history, or evolution, of flow fields and species. In this study evolution is followed from the intake port through combustion. Pathline analysis follows packets of intake charge in time and space from induction through combustion. The local scalar fields traversed by the individual packets in terms of velocity magnitude, turbulence, species concentration and temperatures are extracted from the simulation results. The results show how the intake event establishes local chemical and thermal environments in-cylinder and how the species respond (chemically react) to the local field.
Journal Article

High Resolution Scalar Dissipation Measurements in an IC Engine

2009-04-20
2009-01-0662
The ability to make fully resolved turbulent scalar field measurements has been demonstrated in an internal combustion engine using one-dimensional fluorobenzene fluorescence measurements. Data were acquired during the intake stroke in a motored engine that had been modified such that each intake valve was fed independently, and one of the two intake streams was seeded with the fluorescent tracer. The scalar energy spectra displayed a significant inertial subrange that had a −5/3 wavenumber power dependence. The scalar dissipation spectra were found to extend in the high-wavenumber regime, to where the magnitude was more than two decades below the peak value, which indicates that for all practical purposes the measurements faithfully represent all of the scalar dissipation in the flow.
Technical Paper

Hydrodynamics of Droplet Impingement on a Heated Surface

1993-03-01
930919
The impingement of liquid fuels on surfaces in IC engines affects performance and emissions. To better understand liquid/solid interactions, the impact of single droplets on a healed surface was experimentally examined. The droplet impingement was photographed with a high speed cine camera to obtain a history of the hydrodynamics of the impingement process. Images obtained from the cine photography were inspected to determine hydrodynamic regimes: wetting, transition, and non-wetting, associated with the specific impingement conditions (droplet size, velocity, surface temperature, and ambient pressure). Images from selected impingement conditions were further analyzed to quantify the atomization resulting from the impingement.
Technical Paper

J1939 High Speed Serial Communications, The Next Generation Network for Heavy Duty Vehicles

1993-01-09
931809
Data link interfaces are a very important part of the heavy duty vehicle industry; sharing information between subsystems is vital. SAE Recommended Practices J1708, J1587 and J1922 were developed to provide standards for proprietary communications, general information sharing, diagnostic definition and early powertrain controls. The industry realized, however, that these standards would not accomplish the ultimate goal-that of a high speed control and communications network. The development of more capable serial data communications for the heavy duty vehicle industry was prompted by the following: the desire of component suppliers to integrate subsystems for improved performance; the advancement of technology; customer expectations; and government regulations.
Technical Paper

Determination of Flame-Front Equivalence Ratio During Stratified Combustion

2003-03-03
2003-01-0069
Combustion under stratified operating conditions in a direct-injection spark-ignition engine was investigated using simultaneous planar laser-induced fluorescence imaging of the fuel distribution (via 3-pentanone doped into the fuel) and the combustion products (via OH, which occurs naturally). The simultaneous images allow direct determination of the flame front location under highly stratified conditions where the flame, or product, location is not uniquely identified by the absence of fuel. The 3-pentanone images were quantified, and an edge detection algorithm was developed and applied to the OH data to identify the flame front position. The result was the compilation of local flame-front equivalence ratio probability density functions (PDFs) for engine operating conditions at 600 and 1200 rpm and engine loads varying from equivalence ratios of 0.89 to 0.32 with an unthrottled intake. Homogeneous conditions were used to verify the integrity of the method.
Technical Paper

Regenerative Testing of Hydraulic Pump/Motor Systems

1994-09-01
941750
Regenerative testing methods can be used to allow the testing of hydraulic pumps and motors at significantly higher power and flow levels than that of the power supply used. This method can also increase the accuracy of system efficiency measurements. The increase in accuracy is realized because only the power added to compensate for the system losses needs to be measured with great accuracy. Typically, for the operation points of interest this will be a much smaller quantity than the overall power of the system. Knowing that the error in flow measurements is a function of the quantity measured, the benefit of measuring the losses becomes clear. An additional, distinct advantage of regenerative testing is that no dynamometer or load is needed. This results in a much simpler test setup. This paper documents the development of such a test program at the University of Wisconsin-Madison.
Technical Paper

Measurement and Modeling of Thermal Flows in an Air-Cooled Engine

1996-08-01
961731
Control of the flow of thermal energy in an air-cooled engine is important to the overall performance of the engine because of potential effects on engine performance, durability, design, and emissions. A methodology is being developed for the assessment of thermal flows in air-cooled engines, which includes the use of cycle simulation and in-cylinder heat flux measurements. The mechanism for the combination of cycle simulation, the measurement of in-cylinder heat flux and wall temperatures, and comparison of predicted and measured heat flux in the methodology is presented. The methodology consists of both simulation and experimental phases. To begin, a one-dimensional gas dynamics code (WAVE) has been used in conjunction with a detailed in-cylinder flow and combustion model (IRIS) in order to simulate engine operation in a variety of operating conditions. The methods used to apply the model to the air-cooled engine case are described in detail.
Technical Paper

Multidimensional Modeling of Spray Atomization and Air-Fuel Mixing in a Direct-Injection Spark-Ignition Engine

1997-02-24
970884
A numerical study of air-fuel mixing in a direct-injection spark-ignition engine was carried out. In this paper, the numerical models are described and grid generation methods to represent a realistic port-valve-chamber geometry is discussed. To model a vaporizing hollow-cone spray resulting from an automotive pressure-swirl injector, a newly developed sheet spray atomization model was used to compute the processes of disintegration of the liquid sheet and breakup of the subsequent drops. Computations were performed of a particular 4-valve pent-roof engine configuration in which the intake process and an early fuel injection scheme were considered. After an analysis of the intake-generated flow structures in this engine configuration, the spray behavior and the spatial and temporal evolution of fuel liquid and vapor phases are characterized.
Technical Paper

Hardware Implementation Details and Test Results for a High-Bandwith, Hydrostatic Transient Engine Dynamometer System

1997-02-24
970025
Transient operation of automobile engines is known to contribute significantly to regulated exhaust emissions, and is also an area of drivability concerns. Furthermore, many on-board diagnostic algorithms do not perform well during transient operation and are often temporarily disabled to avoid problems. The inability to quickly and repeatedly test engines during transient conditions in a laboratory setting limits researchers and development engineers ability to produce more effective and robust algorithms to lower vehicle emissions. To meet this need, members of the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin-Madison have developed a high-bandwidth, hydrostatic dynamometer system that will enable researchers to explore transient characteristics of engines and powertrains in the laboratory.
Technical Paper

High Resolution In-Cylinder Scalar Field Measurements during the Compression and Expansion Strokes

2013-04-08
2013-01-0567
High-resolution planar laser-induced fluorescence (PLIF) measurements were performed on the scalar field in an optical engine. The measurements were of sufficient resolution to fully resolve all of the length scales of the flow field through the full cycle. The scalar dissipation spectrum was calculated, and by fitting the results to a model turbulent spectrum the Batchelor scale of the turbulent flow was estimated. The scalar inhomogeneity was introduced by a low-momentum gas jet injection. A consistent trend was observed in all data; the Batchelor scale showed a minimum value at top dead center (TDC) and was nearly symmetric about TDC. Increasing the engine speed resulted in a decrease of the Batchelor scale, and the presence of a shroud on the intake valve, which increased the turbulence intensity, also reduced the Batchelor scale. The effect of the shrouded valve was less significant compared to the effect of engine speed.
Technical Paper

Performance of a Ceramic Rotor in a Cummins T46 Turbocharger

1984-02-01
840014
This paper documents the successful operation of a modified Cummins T46 turbocharger with a ceramic rotor. This turbocharger is modified to incorporate a 4.6 inch diameter ceramic turbine rotor (pressureless sintered silicon nitride) on the hot end. These results document the most complete ceramic turbine rotor performance map, for a large ceramic turbocharger rotor, available to date.
Technical Paper

Engine Testing for Quality and Productivity

1988-11-01
881768
This paper discusses the various process changes, engine improvements, and equipment evolution that have contributed to significant increases in test productivity for heavy duty engines over the past several years. It deals with the development of short test cycles, methods of diagnosing operating problems, methods of maintaining test accuracy and discusses systems for minimizing test equipment down time. Finally it presents historical overview of the changes as they occurred at Cummins Engine Company and how performance improved over that transition period.
Technical Paper

Cummins Smart Oil Consumption Measuring System

2000-03-06
2000-01-0927
The advantages and disadvantages for the current oil consumption measurement systems, including the real-time oil consumption measurement and traditional weight methods, are reviewed. Based on the review, the Smart Oil Consumption Measuring System developed by Cummins Engine Co. in an effort to resolve some of the disadvantages of the systems developed earlier, especially compared to the Gravity Fed oil consumption measurement system, will be discussed. In addition, the uncertainty analysis of the Smart Oil Consumption Measuring System will also be briefly discussed here. The Smart Oil Consumption Measuring System has proven to be an effective tool to measure the oil consumption at almost any engine test conditions, including the steady and cyclic tests in a shorter time than most of traditional oil consumption measurement systems.
Technical Paper

Simplified Engine Combustion Diagnostics Using “Synthetic” Variables

2000-03-06
2000-01-0364
This paper presents a diagnostics methodology that has applications to internal combustion engines as well as other dynamic devices. Included is an overview of the theoretical foundation of the approach, discussions on its application to internal combustion engine diagnostics, and experimental engine data showing the application of this methodology. Also included are the recent developments addressing issues of the effect of motoring compression and expansion work on crankshaft speed fluctuations and the resulting torque estimation. The methodology consists of a hard-wired nonlinear to linear transformation of engine variables that allow all subsequent diagnostics and control calculations to use linear mathematics, which significantly simplifies the size and complexity of the engine control and diagnostics strategy and code.
X