Refine Your Search

Topic

Author

Search Results

Journal Article

Design of Seat Mounted ECG Sensor System for Vehicle Application

2013-04-08
2013-01-1339
The causes of deaths in traffic accidents are predominantly human factors such as careless or "heedlessness" driving; recently, accidents that are believed to be due to deteriorated physical conditions, such as heart attacks, have been reported. Non-contact electrocardiography (ECG) monitor for continuous ECG detection while driving is needed to reduce a number of fatal accident by human error like this. Recently there are a lot of papers to detect cardiac electricity using capacitance coupling between human body and electrode. This sensor system must be adopted appropriate high input impedance circuit and noise reduction technique as a function of source impedance value especially for a seat mounted sensor.
Journal Article

Capacitive Humidity Sensors Using Highly Durable Polyimide Membrane

2013-04-08
2013-01-1337
Humidity sensors used in automatic windshield defogging controls contribute to the improvement of fuel consumption. The optimum control of air conditioning systems can be realized by adding humidity information to conventional systems which have used only temperature information. While resistive humidity sensors have been widely used, their sensing range and responsiveness are observed as issues. Resistive sensors cannot function at a humidity range of around 100% RH as well as at a low temperature range, and have a low response rate to sudden changes in humidity. It is considered that resistive humidity sensors will be replaced with capacitive ones which have a wide sensing range and high responsiveness.
Technical Paper

4th Generation Diesel Piezo Injector (Realizing Enhanced High Response Injector)

2016-04-05
2016-01-0846
Diesel common rail injectors are required to utilize a higher injection pressure and to achieve higher injection accuracy in order to meet increasingly severe emissions, less fuel consumption, and higher engine performance demand. In addition to those requirements, in conjunction with optimized nozzle geometry, a more rectangular injection rate and stable multiple injections with shorter intervals are required for further emissions and engine performance improvement by optimizing the combustion efficiency.
Technical Paper

Analysis of Influence Factors for Partial Discharge Inception Voltage between Magnet-Wires on Rotating Machines

2016-04-05
2016-01-1226
In automobiles, Integrated Starter Generators (ISGs) are important components since they ensure significant fuel economy improvements. With motors that operate at high voltage such as ISGs, it is important to accurately know partial discharge inception voltages (PDIVs) for the assured insulation reliability of the motors. However, the PDIVs vary due to various factors including the environment (temperature, atmospheric pressure and humidity), materials (water absorption and degradation) and voltage waveforms. Consequently, it is not easy either empirically or analytically to ascertain the PDIVs in a complex environment (involving, for example, high temperature, low atmospheric pressure and high humidity) in which many factors vary simultaneously, as with invehicle environments. As a well-known method, PDIVs can be analyzed in terms of two voltage values, which are the breakdown voltage of the air (called “Paschen curve”) and the shared voltage of the air layer.
Technical Paper

IGBT Gate Control Methods to Reduce Electrical Power Losses of Hybrid Vehicles

2016-04-05
2016-01-1224
Reducing the loss of the power control unit (PCU) in a hybrid vehicle (HV) is an important part of improving HV fuel efficiency. Furthermore the loss of power devices (insulated gate bipolar transistors (IGBTs) and diodes) used in the PCU must be reduced since this amounts to approximately 20% of the total electrical loss in an HV. One of the issues for reducing loss is the trade-off relationship with reducing voltage surge. To restrict voltage surge, it is necessary to slow down the switching speed of the IGBT. In contrast, the loss reduction requires the high speed switching. One widely known method to improve this trade-off relationship is to increase the gate voltage in two stages. However, accurate and high-speed operation of the IGBT gate control circuit is difficult to accomplish. This research clarifies a better condition of the two-stage control and designed a circuit that improves this trade-off relationship by increasing the speed of feedback control.
Technical Paper

Development of High Accuracy Rear A/F Sensor

2017-03-28
2017-01-0949
New 2A/F systems different from usual A/F-O2 systems are being developed to cope with strict regulation of exhaust gas. In the 2A/F systems, 2A/F sensors are equipped in front and rear of a three-way catalyst. The A/F-O2 systems are ideas which use a rear O2 to detect exhaust gas leaked from three-way catalyst early and feed back. On the other hand, the 2A/F systems are ideas which use a rear A/F sensor to detect nearly stoichiometric gas discharged from the three-way catalyst accurately, and to prevent leakage of exhaust gas from the three-way catalyst. Therefore, accurate detection of nearly stoichiometric gas by the rear A/F sensor is the most importrant for the 2A/F systems. In general, the A/F sensors can be classified into two types, so called, one-cell type and two-cell type. Because the one-cell type A/F sensors don’t have hysteresis, they have potential for higher accuracy.
Technical Paper

Development of a New MOS Rectifier for High-Efficiency Alternators

2017-03-28
2017-01-1240
For the purpose of improving vehicle fuel efficiency, it is necessary to reduce energy loss in the alternator. We have lowered the resistance of the rectifying device and connecting components, and control the rectifying device with an IC to reduce rectification loss. For the package design, we have changed the structure of the part on which the rectifying device is mounted into a high heat dissipation type. The new structure has enabled optimizing the size of the rectifying device, resulting in the reduction of size of the package. In addition, the rectifying device is mounted using a new soldering material and a new process, which has improved the reliability of the connection. Moreover, since the alternator has introduced a new system, the controller IC has a function for preventing malfunction of the rectifying device and a function for detecting abnormalities, in order to ensure safety.
Technical Paper

Development of High Efficiency Rectifier with MOSFET in “eSC Alternator”

2017-03-28
2017-01-1228
Alternator, which supplies electric energy to a battery and electrical loads when it is rotated by engine via belt, is one of key components to improve vehicle fuel efficiency. We have reduced rectification loss from AC to DC with a MOSFET instead of a rectifier diode. It is important to turn on the MOSFET and off during a rectification period, called synchronous control, to avoid a current flow in the reverse direction from the battery. We turn it off so as to remain a certain conduction period through a body diode of the MOSFET before the rectification end. It is controlled by making a feedback process to coincide with an internal target conduction period based on the rotational speed of the alternator. We reduced a voltage surge risk at turn-off by changing the feedback gain depending on the sign of the time difference between the measured period and the target.
Technical Paper

Virtual Development for In-Vehicle Network Topology – A Case Study of CAN FD Physical Layer

2017-03-28
2017-01-0023
In-vehicle network communication is evolving faster speeds and higher performance capabilities, connecting the information possessed by ECU and sensors with the in-vehicle electronic systems which are continuing to develop. With the evolution of the complicated networks, it is becoming difficult to develop them without many verification of actual machine. On the other hand, as for the verification means required at the logic level or physical level for a network verification through ECU design, virtual verification in the whole vehicle is difficult due to speed increases and the sheer size of the system. Therefore, it is only applicable for systems which are limited to a domain or an area, and flexible and timely utilization would be difficult due to the changes in specifications.
Technical Paper

A Novel Beamspace Technology Based On 2FCW for Radar Target Detection

2017-03-28
2017-01-0025
In the last decade, radar-based Advanced Driver Assistance Systems (ADAS) have improved safety of transportation. Today, the standardization of ADAS established by New Car Assessment Program (NCAP) is expected to expand its market globally. One of the key technologies of ADAS is the rear-side monitoring system such as Blind Spot Warning (BSW) and Closing Vehicle Warning (CVW). It is required to expand its detection range so that it can monitor not only nearside targets for BSW, but farther targets for CVW. These applications can be achieved using two radar sensors installed at rear-side corner of the vehicle. However, the expanded detection range causes undesirable target detections and decreases target recognition performance. In this paper, a novel solution to improve the performance using DCMP(Directional-Constrained Minimization of Power)-based Beamspace technology using Two-frequency continuous wave (2FCW also known as FSK) is introduced.
Technical Paper

Accumulation Mechanism of Gasoline EGR Deposit

2017-03-28
2017-01-0806
Exhaust Gas Recirculation (EGR) systems reduce exhaust emissions and improve fuel efficiency. Recently, the number of EGR system installed vehicles has been increasing, especially for gasoline engine systems. One of the major causes of decreasing EGR function is deposit accumulation on a gas passage. The deposit consists mainly of hydrocarbons which are degradation products of fuel, thus the amount of deposit seems to be strongly affected by fuel compositions. Unfortunately there are not as many studies on EGR deposits with gasoline fuel as there are with diesel fuel. In this study, the influence of gasoline fuel compositions, especially aromatics which are major components of EGR gas, on chemical structures of the deposit were investigated. To clarify the accumulation mechanism of EGR deposits, a thermal oxidative degradation test with an autoclave unit and an actual gasoline engine test were employed.
Technical Paper

Pressure Sensor Module for High Temperature,High Pressure, and Quick Response

2018-04-03
2018-01-0759
According to the advance of engine control development, demands for direct sensing of physical quantity have been growing. Regarding pressure sensing, key properties for direct sensing are robustness against high temperature and pressure, and response time in addition to accuracy. In this work, a pressure sensor module with these key properties was developed. First of all, a piezoelectric device was selected as a suitable sensing principle for the required properties because of its thermally stable piezoelectric effect and potential for simple installation structure. Regarding robustness against temperature, the sensor module was designed to form thermal isolation layer with outer housing which is optimized according to its application. Regarding robustness against pressure and response time, breakage of the piezoelectric element is the main technical issue.
Technical Paper

Cam and Crank Rotation Sensor with Reverse Rotation Detection

2006-04-03
2006-01-1460
In order to improve the performance of Engine Management System (EMS), it becomes more important to accurately detect the position of cam and crank with rotation sensors, usually as referred cam and crank sensor. In addition, expectations for the idle stop system to follow the reinforcement of emission regulations require cam and crank sensors to implement the function of reverse rotation detection. This paper discusses our development of a new generation rotation sensor (MR3) that uses AMR (Anisotropic Magneto Resistance) for accurate rotation detection to meet all system and market demands with minimum number of components to achieve high quality but less expensive price.
Technical Paper

Development of a Compact and High-Performance Radiator for Thermal Management of Environmentally-Friendly Cars

2018-04-03
2018-01-0087
To comply with increasing fuel efficiency regulations, a low temperature radiator (LT radiator) is required to cool the charge-air system of a turbocharged engine. These engines are important to use for environmentally-friendly cars. Since heavy-duty and high-performance cars demand high cooling performance, the main radiator alone is typically insufficient in meeting the vehicle’s cooling requirements. An additional radiator installed in the front of the wheel-well is required to meet the extra cooling demand. In order to install this radiator in the front of the wheel-well, guaranteed performance in the limited packaging space and impact resistance of the leading tube edge are required. We developed the Supplementary Inner-Fin Radiator (SIR) which achieves the compact, high-performance, and durability requirements by use of an inner-fin tube (I/F tube). The purpose of this paper is to report our design approach and product specifications of the SIR.
Technical Paper

Technologies of DENSO Common Rail for Diesel Engine and Consumer Values

2004-10-18
2004-21-0075
Electronics has greatly contributed to the operation of internal combustion engines. This is especially evident in the benefits that it has brought to drivers, such as enhancing the “Fun to Drive” experience and in reducing the cost of fuel. Moreover, this progress has resulted in minimizing environmental degradation, and yet continuing to support improvements in performance. In the diesel engine, which has superb fuel economy, the innovative progress has been achieved by the common rail technology. The common rail system has the features of high injection pressure control in all engine speed range, highly precise injection control and multiple injections per combustion cycle. The latest 2nd generation of the DENSO common rail system features 1800 bar injection pressure, and five times multiple injection with fully electronic control to ensure precise small injection quantities. This technology has been commercialized into passenger car products in the European market.
Technical Paper

High Resolution LiDAR Based on Single Chip SPAD Array

2019-04-02
2019-01-0119
It is important that Advanced Driver Assistance Systems (ADAS) and Automated Driving Systems (AD) detect on-road objects, road vehicles and pedestrians. The typical detection devices mounted on ADAS and AD include a camera, a millimeter-wave radar and a Light Detection And Ranging (LiDAR). Since LiDAR can obtain accurate distance and fine spatial resolution due to its short wavelength, it is expected that small objects such as a tire can be detected. However, the conventional LiDAR is equipped with multiple light transmitters and light receivers such as avalanche photo diodes. This causes LiDAR system to be expensive and large in size. Aiming to reduce the cost and size of LiDAR, we employed Single-Photon Avalanche Diode (SPAD) which can be fabricated by CMOS process and easily arrayed. We also developed “Single Chip SPAD Array“ in which the two-dimensional array of SPAD and a signal processing block of range calculation were integrated into a single chip.
Technical Paper

Research in OFDM-Based High-Speed In-Vehicle Network Connectivity for Cameras and Displays

2021-04-06
2021-01-0151
Growing trends of connected and autonomous vehicles have pushed for increased resolutions of cameras to 8Mpix and displays to 4K/8K, leading to requirements for high-speed interfaces that support 10Gbps and beyond. Unlike data center or enterprise networks which normally operates under controlled indoor environments, in-vehicle networks are required to operate in harsh temperature and interference environments. Due to cost restrictions, the use of single pair wire is prevalent for in-vehicle networks. In general, as data transmission speed increase, signal spectrum spreads across greater frequency range. Since insertion loss of a channel increases in proportion to signal frequency, it becomes more difficult to secure SNR (signal-to-noise ratio) margins as bit rate increases. This makes it increasingly difficult for a device (e.g. ECUs, sensors, and displays) with high-speed communication interface to meet EMC (electromagnetic compatibility) criteria imposed by automotive OEMs.
Technical Paper

Development of High Accuracy and Quick Light-off NOx Sensor

2018-04-03
2018-01-0334
For the purpose of coping with the strengthening of NOx exhaust gas control and fuel consumption control, it is indispensable to improve the NOx purification capacity. In view of this, vehicle manufacturers are in the course of developing high performance SCR (Selective Catalytic Reduction) systems [1, 2]. For such SCR systems to be realized, high precision NOx sensors for carrying out urea injection quantity control and SCR degradation diagnosis are absolutely indispensable. Detection of NOx concentration by means of a NOx sensor is generally performed as follows: O2 is discharged by means of an O2 detection electrode; remaining NOx is decomposed by a NOx detection electrode; NOx concentration is then detected as electric current that flows when oxygen ions are conduct through solid electrolyte. In order to detect NOx of ppm-order, it is necessary to detect minute current of nA-order with high accuracy.
Technical Paper

Development of Automatic Braking System to Help Reduce Rear Impacts

2017-03-28
2017-01-1408
A Rear Cross Traffic Auto Brake (RCTAB) system has been developed that uses radar sensors to detect vehicles approaching from the right or left at the rear of the driver’s vehicle, and then performs braking control if the system judges that a collision may occur. This system predicts the intersecting course of approaching vehicles and uses the calculated time-to-collision (TTC) to control the timing of automatic braking with the aim of helping prevent unnecessary operation while ensuring system performance.
Technical Paper

A Wearable Device for Traffic Safety - A Study on Estimating Drowsiness with Eyewear, JINS MEME

2016-04-05
2016-01-0118
This paper presents detection technology for a driver monitoring system using JINS MEME, an eyewear-type wearable device. Serious accidents caused by human error such as dozing while driving or inattentive driving have been increasing recently in Japan. JINS MEME is expected to contribute to reducing the number of traffic deaths by constantly monitoring the driver with an ocular potential sensor. This paper also explains how a driver’s drowsiness level can be estimated from information on their blink rate, which can be calculated from the ocular potential.
X