Refine Your Search

Topic

Author

Affiliation

Search Results

Video

An Experimental Analysis on Diesel/n-Butanol Blends Operating in Partial Premixed Combustion in a Light Duty Diesel Engine

2012-06-18
This paper reports results of an experimental investigation performed on a commercial diesel engine supplied with fuel blends having low cetane number to attain a simultaneous reduction in NOx and smoke emissions. Blends of 20% and 40% of n-butanol in conventional diesel fuel have been tested, comparing engine performance and emissions to diesel ones. Taking advantage of the fuel blend higher resistance to auto ignition, it was possible to extend the range in which a premixed combustion is achieved. This allowed to match the goal of a significant reduction in emissions without important penalties in fuel consumption. The experimental activity was carried on a turbocharged, water cooled, 4 cylinder common rail DI diesel engine. The engine equipment included an exhaust gas recirculation system controlled by an external driver, a piezo-quartz pressure transducer to detect the in-cylinder pressure signal and a current probe to acquire the energizing current to the injector.
Journal Article

Methodology for the analysis of a 4-stroke moped emission behaviour

2009-09-13
2009-24-0142
Mopeds are popular means of transportation, particularly in southern Europe and in eastern and southern Asia. The relative importance of their emissions increases in urban environments which host large fleets of mopeds. In Naples, for example, mopeds make a considerable contribution to HC emissions (about 53%), although the percentage of mopeds (12.4%) in the total circulating fleet is lower than that of other vehicle categories [1]. This study presents a method for analysing the influence of kinematic parameters on the emission factors of mopeds during the “cold-start” and “hot” phases of elementary kinematic sequences (speed-time profiles between two successive stops). These elementary sequences were obtained through appropriate fragmentation of complex urban driving cycles. In a second step, we show how to estimate, for the whole cycle, the duration of the cold phase and the relevant time-dependence function.
Journal Article

Removal of NOx from Diesel Exhausts: The New “Enhanced NH3-SCR” Reaction

2010-04-12
2010-01-1181
Ammonia/urea-SCR is a mature technology, applied worldwide for the control of NOx emissions in combustion exhausts from thermal power plants, cogeneration units, incinerators and stationary diesel engines and more recently also from mobile sources. However a greater DeNOx activity at low temperatures is desired in order to meet more and more restrictive legislations. In this paper we report transient and steady state data collected over commercial Fe-ZSM-5 and V₂O₅-WO₃/TiO₂ catalysts showing high NOx reduction efficiencies in the 200 - 350°C T-range when NO and ammonia react with nitrates, e.g., in the form of an aqueous solution of ammonium nitrate. Under such conditions a new reaction occurs, the so-called "Enhanced SCR" reaction, 2 NH₃ + 2 NO + NH₄NO₃ → 3 N₂ + 5 H₂O.
Journal Article

Towards the Use of Eulerian Field PDF Methods for Combustion Modeling in IC Engines

2014-04-01
2014-01-1144
Detailed chemistry and turbulence-chemistry interaction need to be properly taken into account for a realistic combustion simulation of IC engines where advanced combustion modes, multiple injections and stratified combustion involve a wide range of combustion regimes and require a proper description of several phenomena such as auto-ignition, flame stabilization, diffusive combustion and lean premixed flame propagation. To this end, different approaches are applied and the most used ones rely on the well-stirred reactor or flamelet assumption. However, well-mixed models do not describe correctly flame structure, while unsteady flamelet models cannot easily predict premixed flame propagation and triple flames. A possible alternative for them is represented by transported probability density functions (PDF) methods, which have been applied widely and effectively for modeling turbulent reacting flows under a wide range of combustion regimes.
Technical Paper

Polycyclic Aromatic Hydrocarbons Evolution and Interactions with Soot Particles During Fuel Surrogate Combustion: A Rate Rule-Based Kinetic Model

2021-09-05
2021-24-0086
Modeling combustion of transportation fuels remains a difficult task due to the extremely large number of species constituting commercial gasoline and diesel. However, for this purpose, multi-component surrogate fuel models with a reduced number of key species and dedicated reaction subsets can be used to reproduce the physical and chemical traits of diesel and gasoline, also allowing to perform CFD calculations. Recently, a detailed surrogate fuel kinetic model, named C3 mechanism, was developed by merging high-fidelity sub-mechanisms from different research groups, i.e. C0-C4 chemistry (NUI Galway), linear C6-C7 and iso-octane chemistry (Lawrence Livermore National Laboratory), and monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs) (ITV-RWTH Aachen and CRECK modelling Lab-Politecnico di Milano).
Journal Article

Experimental and Numerical Study of Flame Kernel Formation Processes of Propane-Air Mixture in a Pressurized Combustion Vessel

2016-04-05
2016-01-0696
Fuel lean combustion and exhaust gas dilution are known to increase the thermal efficiency and reduce NOx emissions. In this study, experiments are performed to understand the effect of equivalence ratio on flame kernel formation and flame propagation around the spark plug for different low turbulent velocities. A series of experiments are carried out for propane-air mixtures to simulate engine-like conditions. For these experiments, equivalence ratios of 0.7 and 0.9 are tested with 20 percent mass-based exhaust gas recirculation (EGR). Turbulence is generated by a shrouded fan design in the vicinity of J-spark plug. A closed loop feedback control system is used for the fan to generate a consistent flow field. The flow profile is characterized by using Particle Image Velocimetry (PIV) technique. High-speed Schlieren visualization is used for the spark formation and flame propagation.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

Numerical Optimization of a SCR System Based on the Injection of Pure Gaseous Ammonia for the NOx Reduction in Light-Duty Diesel Engines

2020-04-14
2020-01-0356
Selective Catalytic Reduction (SCR) systems are nowadays widely applied for the reduction of NOx emitted from Diesel engines. The typical process is based on the injection of aqueous urea in the exhaust gases before the SCR catalyst, which determines the production of the ammonia needed for the catalytic reduction of NOx. However, this technology is affected by two main limitations: a) the evaporation of the urea water solution (UWS) requires a sufficiently high temperature of the exhaust gases and b) the formation of solid deposits during the UWS evaporation is a frequent phenomenon which compromise the correct operation of the system. In this context, to overcome these issues, a technology based on the injection of gaseous ammonia has been recently proposed: in this case, ammonia is stored at the solid state in a cartridge containing a Strontium Chloride salt and it is desorbed by means of electrical heating.
Journal Article

Multi-Dimensional Modeling of the Soot Deposition Mechanism in Diesel Particulate Filters

2008-04-14
2008-01-0444
A computational, three-dimensional approach to investigate the behavior of diesel soot particles in the micro-channels of wall-flow Diesel Particulate Filters is presented. The KIVA3V CFD code, already extended to solve the 2D conservation equations for porous media materials [1], has been enhanced to solve in 2-D and 3-D the governing equations for reacting and compressible flows through porous media in non axes-symmetric geometries. With respect to previous work [1], a different mathematical approach has been followed in the implementation of the numerical solver for porous media, in order to achieve a faster convergency as source terms were added to the governing equations. The Darcy pressure drop has been included in the Navier-Stokes equations and the energy equation has been extended to account for the thermal exchange between the gas flow and the porous wall.
Journal Article

The NH3 Inhibition Effect in the Standard SCR Reaction over a Commercial Fe-zeolite Catalyst for Diesel Exhaust Aftertreatment: An Experimental and Modeling Study

2011-04-12
2011-01-1319
Transient and steady-state kinetic data are herein presented to analyze the inhibiting effect of ammonia on the NH₃-SCR of NO at low temperatures over a Fe-zeolite commercial catalyst for vehicles. It is shown that in SCR converter models a rate expression accounting for NH₃ inhibition of the Standard SCR reaction is needed in order to predict the specific dynamics observed both in lab-scale and in engine test bench runs upon switching on and off the ammonia feed. Two redox, dual site kinetic models are developed which ascribe such inhibition to the spill-over of ammonia from its adsorption sites, associated with the zeolite, to the redox sites, associated with the Fe promoter. Better agreement both with lab-scale intrinsic kinetic runs and with engine test-bench data, particularly during transients associated with dosing of ammonia to the SCR catalyst, is obtained assuming slow migration of NH₃ between the two sites.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Technical Paper

Emissions from Marine Engines with Water Contact in the Exhaust Stream

1998-02-23
980681
Recreational marine engine operation effects water quality as well as air quality. Significant quantities of hydrocarbons are discharged into the rivers, lakes, and estuaries used as recreational boating waters. In order to investigate the impact of recreational marine engine operation on water quality, a MerCruiser 3.0LX four-cylinder four-stroke inboard engine and a Mercury 650 two-cylinder two-stroke outboard engine were tested using EPA required certification procedures. Both engines were tested with exhaust gas/cooling water mixing (scrubbing) in the exhaust stream using both freshwater and saltwater. Additionally, the inboard engine was tested without exhaust scrubbing. Gaseous emissions (HC, NOX, CO, and CO2) from the engines were continuously measured using a constant volume sampling system. Both exhaust gas and cooling water samples were collected and speciated for hydrocarbon species present.
Technical Paper

Urban Air Quality Improvements by Means of Vehicular Diesel Particle Filters

2008-04-14
2008-01-0336
The project objective was to investigate the ultrafine solid particle emissions of the prevalent traffic, by performing field measurements at an urban traffic artery in Zurich/Switzerland. Subsequently, various scenarios were postulated to assess the potential of the diesel particle filters (DPF) to improve curbside air quality. Soot aerosols are known to be carcinogenic [1]. If all heavy-duty diesel vehicles were equipped with DPFs, then the number of particles emitted from the entire vehicle fleet could be reduced by 75 to 80%. For PM10, the curtailment scope is considerably lower, around 20%, because more than half of those emissions are not from the exhaust and therefore would not be filtered.
Technical Paper

Progress in Diesel HCCI Combustion Within the European SPACE LIGHT Project

2004-06-08
2004-01-1904
The purpose of the European « SPACE LIGHT » (Whole SPACE combustion for LIGHT duty diesel vehicles) 3-year project launched in 2001 is to research and develop an innovative Homogeneous internal mixture Charged Compression Ignition (HCCI) for passenger cars diesel engine where the combustion process can take place simultaneously in the whole SPACE of the combustion chamber while providing almost no NOx and particulates emissions. This paper presents the whole project with the main R&D tasks necessary to comply with the industrial and technical objectives of the project. The research approach adopted is briefly described. It is then followed by a detailed description of the most recent progress achieved during the tasks recently undertaken. The methodology adopted starts from the research study of the in-cylinder combustion specifications necessary to achieve HCCI combustion from experimental single cylinder engines testing in premixed charged conditions.
Technical Paper

Oxygenates screening for AdvancedPetroleum-Based Diesel Fuels: Part 2. The Effect of Oxygenate Blending Compounds on Exhaust Emissions

2001-09-24
2001-01-3632
Adding oxygenates to diesel fuel has shown the potential for reducing particulate (PM) emissions in the exhaust. The objective of this study was to select the most promising oxygenate compounds as blending components in diesel fuel for advanced engine testing. A fuel matrix was designed to consider the effect of molecular structure and boiling point on the ability of oxygenates to reduce engine-out exhaust emissions from a modern diesel engine. Nine test fuels including a low-sulfur (∼1 ppm), low-aromatic hydrocracked base fuel and 8 oxygenate-base fuel blends were utilized. All oxygenated fuels were formulated to contain 7% wt. of oxygen. A DaimlerChrysler OM611 CIDI engine for light-duty vehicles was controlled with a SwRI Rapid Prototyping Electronic Control System. The base fuel was evaluated in four speed-load modes and oxygenated blends only in one mode. Each operating mode and fuel combination was run in triplicate.
Technical Paper

Effect of an Oxidation Catalyst on Exhaust Emissions of a DI Diesel Engine Operating with Fumigation of the Intake Air with Superheated Steam

2002-05-06
2002-01-1727
An oxidation catalyst was fitted on a DI diesel engine for an experimental study involving an oxidation catalyst and the use of superheated steam for fumigating the intake air. Results are compared with that of the influence of low level of fumigation of the intake air with superheated diesel fuel. Exhaust emissions of NOx, CO, UHC, TPM, SOF and Carbon were measured and quantified on upstream and downstream of a low light off temperature (250 °C) oxidation catalyst. The technique used an electric vaporizer for producing superheated steam and prevaporised superheated diesel fumes at 350 °C, respectively. A low emissions version of Perkins 4-236 engine with squish lip piston was run both with and without fumigation at two speeds 1200 rpm and 2200 rpm. Roughly covering both city and highway running conditions.
Technical Paper

Effect of an Oxidation Catalyst on Exhaust Emissions of a DI Diesel Engine Operating with a Partial Fumigation of the Intake Air with Fuel

2002-05-06
2002-01-1726
Results showed the influence of the oxidation catalyst on exhaust emissions from a DI diesel engine due to the partial premixing, fumigation of the intake air with diesel fuel. Exhaust emissions of NOx, CO, UHC, TPM, SOF and Carbon were measured and quantified on upstream and downstream of a low light off temperature (250 °C) oxidation catalyst. Two methods of diesel fumigation of the intake air with fuel were used. The difference between these two methods was the degree of premixing of diesel fuel with the intake air. The first technique used a high-pressure fine diesel spray onto a glow plug and the second technique used an electric vaporizer for prevaporised superheated diesel fumes at 350 °C. A low emissions version of Perkins 4-236 engine with squish lip piston was run both with and without fumigation at two speeds 1200 rpm and 2200 rpm. Roughly covering both city and highway running conditions.
Technical Paper

Interpreting Remote Sensing NOx Measurements: at Low Load near Chicago 1997-1999, and at High and Low Load Sites on the Same Ramp in Phoenix, 1999

2001-09-24
2001-01-3640
Remote sensing nitric oxide (NO) measurements are difficult to analyze because load varies among on-road vehicles measured by remote sensing and NO emissions are dependent on load. Remote sensing NO measurements were made on passenger cars in 1997, 1998, and 1999 in Chicago, IL at a site where few vehicles had loads greater than those encountered in the FTP. Passenger car NO emissions could be modeled by an equation with an age term and a load term for measurements made under moderate load. Onset of decreasing NO emissions with increasing load was observed to occur at lower load for older technology vehicles. Light duty vehicles were measured by remote sensing at two sites on the same ramp in Phoenix, AZ. A large proportion of the vehicles at one of the sites was under loads far in excess of those experienced in the FTP. NO could not be characterized by a single valued function of age and load for both Phoenix sites even though the fleet at the two sites was very similar.
Technical Paper

NOx Reduction Kinetics Mechanisms and Radical-Induced Autoignition Potential of EGR in I.C. Engines Using Methanol and Hydrogen

2001-11-01
2001-28-0048
This numerical study examines the chemical-kinetics mechanism responsible for EGR NOx reduction in standard engines. Also, it investigates the feasibility of using EGR alone in hydrogen-air and methanol-air combustion to help generate and retain the same radicals previously found to be responsible for the inducement of the autoignition (in such mixtures) in IC engines with the SONEX Combustion System (SCS) piston micro-chamber. The analysis is based on a detailed chemical kinetics mechanism (for each fuel) that includes NOx production. The mechanism for H-air-NOx combustion makes use of 19 species and 58 reactions while the methanol-air-NOx mechanism is based on the use of 49 species and 227 reactions. It was earlier postulated that the combination of thermal control and charge dilution provided by the EGR produces an alteration in the combustion mechanisms (for both the hydrogen and methanol cases) that lowers peak cycle temperatures-thus greatly reducing the production of NOx.
Technical Paper

Potential of Multiple Injection Strategy for Low Emission Diesel Engines

2002-03-04
2002-01-1150
A PC-programmable electronic control unit (PECU), able to manage both conventional and future electronic injection systems to make a fixed number of consecutive injections (1 to 5 or more) controlling the injection pressure and the injection pulses duration as well as the separation time or dwell in between was used to study the behaviour of a Bosch common rail injection system both on dynamic spray bench and on engine test bench. The PECU allowed a reduction in the dwell time between consecutive injection pulses from the current value of 1800 μs to 500 μs. Photographic sequences of a five holes mini-sac nozzle making five consecutive injections at 400 - 800 and 1200 bar respectively were taken at ambient pressure and temperature. They showed that both spray penetration and cone angle at all operative conditions are very uniform and stable.
X