Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Effects of Fuel Cell Material Properties on Water Management Using CFD Simulation and Neutron Imaging

2010-04-12
2010-01-0934
Effects of fuel cell material properties on water management were numerically investigated using Volume of Fluid (VOF) method in the FLUENT. The results show that the channel surface wettability is an important design variable for both serpentine and interdigitated flow channel configurations. In a serpentine air flow channel, hydrophilic surfaces could benefit the reactant transport to reaction sites by facilitating water transport along channel edges or on channel surfaces; however, the hydrophilic surfaces would also introduce significantly pressure drop as a penalty. For interdigitated air flow channel design, it is observable that liquid water exists only in the outlet channel; it is also observable that water distribution inside GDL is uneven due to the pressure distribution caused by interdigitated structure. An in-situ water measurement method, neutron imaging technique, was used to investigate the water behavior in a PEM fuel cell.
Journal Article

Instabilities at the Low-Flow Range of a Turbocharger Compressor

2013-05-13
2013-01-1886
The acoustic and performance characteristics of an automotive centrifugal compressor are studied on a steady-flow turbocharger test bench, with the goal of advancing the current understanding of compression system instabilities at the low-flow range. Two different ducting configurations were utilized downstream of the compressor, one with a well-defined plenum (large volume) and the other with minimized (small) volume of compressed air. The present study measured time-resolved oscillations of in-duct and external pressure, along with rotational speed. An orifice flow meter was incorporated to obtain time-averaged mass flow rate. In addition, fast-response thermocouples captured temperature fluctuations in the compressor inlet and exit ducts along with a location near the inducer tips.
Journal Article

Power Management of Hybrid Electric Vehicles based on Pareto Optimal Maps

2014-04-01
2014-01-1820
Pareto optimal map concept has been applied to the optimization of the vehicle system control (VSC) strategy for a power-split hybrid electric vehicle (HEV) system. The methodology relies on an inner-loop optimization process to define Pareto maps of the best engine and electric motor/generator operating points given wheel power demand, vehicle speed, and battery power. Selected levels of model fidelity, from simple to very detailed, can be used to generate the Pareto maps. Optimal control is achieved by applying Pontryagin's minimum principle which is based on minimization of the Hamiltonian comprised of the rate of fuel consumption and a co-state variable multiplied by the rate of change of battery SOC. The approach delivers optimal control for lowest fuel consumption over a drive cycle while accounting for all critical vehicle operating constraints, e.g. battery charge balance and power limits, and engine speed and torque limits.
Journal Article

Compressive Behavior of Representative Volume Element Specimens of Lithium-Ion Battery Cells under Different Constrained Conditions

2014-04-01
2014-01-1987
The compressive behavior of lithium-iron phosphate battery cells is investigated by conducting in-plane constrained compression tests and out-of-plane compression tests of representative volume element (RVE) specimens. The results for cell RVE specimens under in-plane constrained compression tests without pre-strains and with pre-strains in the out-of-plane direction indicate that the load carrying capacity is characterized by the buckling of cell specimens. As the pre-strain increases, the nominal compressive stress-strain curve becomes higher. The nominal stress-strain curves in the out-of-plane direction were also obtained and used to determine the elastic moduli for the elastic buckling analyses of the cell components in the cell RVE specimens with different pre-strains. Based on the elastic buckling analyses for a beam with different lateral constraints due to different pre-strains in the out-of-plane direction, the number of half waves and the buckling stresses were obtained.
Journal Article

Cyclic Behavior of an Al-Si-Cu Alloy under Thermo-Mechanical Loading

2014-04-01
2014-01-1012
In this paper, the cyclic deformation behavior of an Al-Si-Cu alloy is studied under strain-controlled thermo-mechanical loading. Tests are carried out at temperatures from 20 °C to 440 °C. The effect of strain rate, hold time at temperature and loading sequence are investigated at each temperature. The results show that temperature has a significant effect on the cyclic deformation of Al-Si-Cu alloys. With increasing temperature, the effect of strain rate and hold time become more significant, while load sequence effects remain negligible within the investigated temperature range. Thus, an elasto-viscoplastic model is required for modeling the alloy's behavior at high temperature. This study provides an insight into the necessary information required for modeling of automotive engine components operating at elevated temperature.
Journal Article

Model-Based Parameter Identification of Healthy and Aged Li-ion Batteries for Electric Vehicle Applications

2015-04-14
2015-01-0252
Electric vehicles are receiving considerable attention because they offer a more efficient and sustainable transportation alternative compared to conventional fossil-fuel powered vehicles. Since the battery pack represents the primary energy storage component in an electric vehicle powertrain, it requires accurate monitoring and control. In order to effectively estimate the battery pack critical parameters such as the battery state of charge (SOC), state of health (SOH), and remaining capacity, a high-fidelity battery model is needed as part of a robust SOC estimation strategy. As the battery degrades, model parameters significantly change, and this model needs to account for all operating conditions throughout the battery's lifespan. For effective battery management system design, it is critical that the physical model adapts to parameter changes due to aging.
Journal Article

Real-time Determination of Driver's Driving Behavior during Car Following

2015-04-14
2015-01-0297
This paper proposes an approach that characterizes a driver's driving behavior and style in real-time during car-following drives. It uses an online learning of the evolving Takagi-Sugeno fuzzy model combined with the Markov model. The inputs fed into the proposed algorithm are from the measured signals of on-board sensors equipped with current vehicles, including the relative distance sensors for Adaptive Cruise Control feature and the accelerometer for Electronic Stability Control feature. The approach is verified using data collected using a test vehicle from several car-following test trips. The effectiveness of the proposed approach has been shown in the paper.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Journal Article

Towards an Optimum Aftertreatment System Architecture

2015-01-14
2015-26-0104
Aftertreatment system design involves multiple tradeoffs between engine performance, fuel economy, regulatory emission levels, packaging, and cost. Selection of the best design solution (or “architecture”) is often based on an assumption that inherent catalyst activity is unaffected by location within the system. However, this study acknowledges that catalyst activity can be significantly impacted by location in the system as a result of varying thermal exposure, and this in turn can impact the selection of an optimum system architecture. Vehicle experiments with catalysts aged over a range of mild to moderate to severe thermal conditions that accurately reflect select locations on a vehicle were conducted on a chassis dynamometer. The vehicle test data indicated CO and NOx could be minimized with a catalyst placed in an intermediate location.
Journal Article

Turbocharger Turbine Inlet Isentropic Pressure Observer Model

2015-04-14
2015-01-1617
Exhaust pressures (P3) are hard parameters to measure and can be readily estimated, the cost of the sensors and the temperature in the exhaust system makes the implementation of an exhaust pressure sensor in a vehicle control system a costly endeavor. The contention with measured P3 is the accuracy required for proper engine and vehicle control can sometimes exceed the accuracy specification of market available sensors and existing models. A turbine inlet exhaust pressure observer model based on isentropic expansion and heat transfer across a turbocharger turbine was developed and investigated in this paper. The model uses 4 main components; an open loop P3 orifice flow model, a model of isentropic expansion across the turbine, a turbine and pipe heat transfer models and an integrator with the deviation in the downstream turbine outlet parameter.
Journal Article

NVH Development of the Ford 2.7L 4V-V6 Turbocharged Engine

2015-06-15
2015-01-2288
A new turbocharged 60° 2.7L 4V-V6 gasoline engine has been developed by Ford Motor Company for both pickup trucks and car applications. This engine was code named “Nano” due to its compact size; it features a 4-valves DOHC valvetrain, a CGI cylinder block, an Aluminum ladder, an integrated exhaust manifold and twin turbochargers. The goal of this engine is to deliver 120HP/L, ULEV70 emission, fuel efficiency improvements and leadership level NVH. This paper describes the upfront design and optimization process used for the NVH development of this engine. It showcases the use of analytical tools used to define the critical design features and discusses the NVH performance relative to competitive benchmarks.
Journal Article

Instrumentation, Acquisition and Data Processing Requirements for Accurate Combustion Noise Measurements

2015-06-15
2015-01-2284
The higher cylinder peak pressure and pressure rise rate of modern diesel and gasoline fueled engines tend to increase combustion noise while customers demand lower noise. The multiple degrees of freedom in engine control and calibration mean there is more scope to influence combustion noise but this must first be measured before it can be balanced with other attributes. An efficient means to realize this is to calculate combustion noise from the in-cylinder pressure measurements that are routinely acquired as part of the engine development process. This publication reviews the techniques required to ensure accurate and precise combustion noise measurements. First, the dynamic range must be maximized by using an analogue to digital converter with sufficient number of bits and selecting an appropriate range in the test equipment.
Journal Article

Effect of Aerodynamically Induced Pre-Swirl on Centrifugal Compressor Acoustics and Performance

2015-06-15
2015-01-2307
The effect of aerodynamically induced pre-swirl on the acoustic and performance characteristics of an automotive centrifugal compressor is studied experimentally on a steady-flow turbocharger facility. Accompanying flow separation, broadband noise is generated as the flow rate of the compressor is reduced and the incidence angle of the flow relative to the leading edge of the inducer blades increases. By incorporating an air jet upstream of the inducer, a tangential (swirl) component of velocity is added to the incoming flow, which improves the incidence angle particularly at low to mid-flow rates. Experimental data for a configuration with a swirl jet is then compared to a baseline with no swirl. The induced jet is shown to improve the surge line over the baseline configuration at all rotational speeds examined, while restricting the maximum flow rate. At high flow rates, the swirl jet increases the compressor inlet noise levels over a wide frequency range.
Journal Article

Real-time Tire Imbalance Detection Using ABS Wheel Speed Sensors

2011-04-12
2011-01-0981
This paper proposes an approach to use ABS wheel speed sensor signals together with other vehicle state information from a brake control module to detect an unbalanced tire or tires in real-time. The proposed approach consists of two-stage algorithms that mix a qualitative method using band-pass filtering with a quantitative parameter identification using conditional least squares. This two-stage approach can improve the robustness of tire imbalance or imbalances. The proposed approach is verified through vehicle testing and the test results show the effectiveness of the approach.
Journal Article

Fracture Modeling Inputs for a Human Body Model via Inference from a Risk Curve: Application for Skull Fracture Potential

2012-04-16
2012-01-0562
A three-step process was developed to estimate fracture criteria for a human body model. The process was illustrated via example wherein skull fracture criteria were estimated for the Ford Human Body Model (FHBM)~a finite element model of a mid-sized human male. The studied loading condition was anterior-to-posterior, blunt (circular/planar) cylinder impact to the frontal bone. In Step 1, a conditional reference risk curve was derived via statistical analysis of the tests involving fractures in a recently reported dataset (Cormier et al., 2011a). Therein, Cormier et al., authors reported results for anterior-to-posterior dynamic loading of the frontal bone of rigidly supported heads of male post mortem human subjects, and fracture forces were measured in 22 cases. In Step 2, the FHBM head was used to conduct some underlying model validations relative to the Cormier tests. The model-based Force-at-Peak Stress was found to approximate the test-based Fracture Force.
Journal Article

Centralized Torque Controller for a Nonminimum Phase Phenomenon in a Powersplit HEV

2012-04-16
2012-01-1026
Torque controls for the engine and electric motors in a Powersplit HEV are keys to the success of balancing fuel economy, driveability, and battery power control. The electric variable transmission (EVT) offers an opportunity to let the engine operate at system-optimal fuel efficient points independently of any load. Existing work shows such a benefit can be realized through a decentralized control structure that translates the driver inputs to independent engine torque and speed control. However, our study shows that the decentralized control structures have a fundamental limitation that arises from the nonminimum phase (NMP) zero in the transfer function from the driver power command to the generator torque change rate, and thus not only is it difficult to obtain smooth generator torque but also it can cause violations on battery power limits during transients. Additionally, it adversely affects the driveability due to the generator torque transients reflected at the ring gear.
Journal Article

Side Crash Pressure Sensor Prediction: An Improved Corpuscular Particle Method

2012-04-16
2012-01-0043
In an attempt to predict the responses of side crash pressure sensors, the Corpuscular Particle Method (CPM) was adopted and enhanced in this research. Acceleration-based crash sensors have traditionally been used extensively in automotive industry to determine the air bag firing time in the event of a vehicle accident. The prediction of crash pulses obtained from the acceleration-based crash sensors by using computer simulations has been very challenging due to the high frequency and noisy responses obtained from the sensors, especially those installed in crash zones. As a result, the sensor algorithm developments for acceleration-based sensors are largely based on prototype testing. With the latest advancement in the crash sensor technology, side crash pressure sensors have emerged recently and are gradually replacing acceleration-based sensor for side impact applications.
Journal Article

Side Crash Pressure Sensor Prediction: An ALE Approach

2012-04-16
2012-01-0046
An Arbitrary Lagrangian Eulerian (ALE) approach was adopted in this study to predict the responses of side crash pressure sensors in an attempt to assist pressure sensor algorithm development by using computer simulations. Acceleration-based crash sensors have traditionally been used to deploy restraint devises (e.g., airbags, air curtains, and seat belts) in vehicle crashes. The crash pulses recorded by acceleration-based crash sensors usually exhibit high frequency and noisy responses depending on the vehicle's structural design. As a result, it is very challenging to predict the responses of acceleration-based crash sensors by using computer simulations, especially those installed in crush zones. Therefore, the sensor algorithm developments for acceleration-based sensors are mostly based on physical testing.
Journal Article

An Assessment of Two Piston Bowl Concepts in a Medium-Duty Diesel Engine

2012-04-16
2012-01-0423
Two combustion systems were developed and optimized for an engine for a power cylinder of 0.8-0.9L/cylinder. The first design was a re-entrant bowl concept which was based on the combustion system of a smaller engine with roughly 0.5L/cylinder. The second design was a chamfered bowl concept, a variant of a reentrant bowl that deliberately splits fuel between the bowl and the squish region. For each combustion system concept, nozzle tip protrusion, swirl, and nozzle configuration (number of holes, nozzle flow, and spray angle) were optimized. Several similarities between combustion system concepts were noted, including the optimal swirl and number of holes. The resulting optimums for each concept were compared. The chamfered combustion system was found to have better part-load emissions and fuel consumption tradeoffs. Full load performance was similar at low speed between the two combustion systems, but the reentrant combustion system had advantages at high engine speed and load.
Journal Article

A Pareto Frontier Analysis of Renewable-Energy Consumption, Range, and Cost for Hydrogen Fuel Cell vs. Battery Electric Vehicles

2012-04-16
2012-01-1224
As automakers strategize approaches to sustainable vehicle technologies, alternative powertrains must be considered to reduce future fleet vehicle emissions and improve energy security. These alternative vehicles include different fuels and electrification. The ultimate for on-road CO2 reductions is a zero emission vehicle, which can be achieved by either a hydrogen fuel cell or battery electric vehicle. These vehicles would also require a renewable energy source to provide their propulsion energy in order to achieve maximum sustainability for both CO2 reduction and energy security. Renewable energy sources such as wind or solar result in heat or electricity that needs to be generated into an energy carrier such as hydrogen or stored in a battery. When examining these options based strictly on the efficiency path, previous analysis have concluded fuel cell vehicles may not be an appropriate suitability strategy in comparison to battery electric vehicles.
X