Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Experimental Modal Methodologies for Quantification of Body/Chassis Response to Brake Torque Variation

2007-05-15
2007-01-2343
Brake torque variation is a source of objectionable NVH body/chassis response. Such input commonly results from brake disk thickness variation. The NVH dynamic characteristics of a vehicle can be assessed and quantified through experimental modal testing for determination of mode resonance frequency, damping property, and shape. Standard full vehicle modal testing typically utilizes a random input excitation into the vehicle frame or underbody structure. An alternative methodology was sought to quantify and predict body/chassis sensitivity to brake torque variation. This paper presents a review of experimental modal test methodologies investigated for the reproduction of vehicle response to brake torque variation in a static laboratory environment. Brake caliper adapter random and sine sweep excitation input as well as body sine sweep excitation in tandem with an intentionally locked brake will be detailed.
Technical Paper

Tailor-Welded Aluminum Blanks for Liftgate Inner

2007-04-16
2007-01-0421
Tailor welded steel blanks have long been applied in stamping of automotive parts such as door inner, b-pillar, rail, sill inner and liftgate inner, etc. However, there are few known tailor welded aluminum blanks in production. Traditional laser welding equipment simply does not have the capability to weld aluminum since aluminum has much higher reflectivity than steel. Welding quality is another issue since aluminum is highly susceptible to pin holes and undercut which leads to deterioration in formability. In addition, high amount of springback for aluminum panels can result in dimension control problem during assembly. A tailor-welded aluminum blank can help reducing dimension variability by reducing the need for assembly. In this paper, application of friction stir and plasma arc welded blanks on a liftgate inner will be discussed.
Technical Paper

Contact Mechanics Simulation for Hot Spots Investigation

2001-03-05
2001-01-0035
Rapid wear out of a disk brake due to phenomena commonly known as hot spots is one of various problems faced by brake manufacturers. Hot spots are localized high temperature areas generated on the frictional surface of a disk brake during braking. The non-uniform surface expansion caused by hot spots on the disk surface may cause pedal pulsation or known as thermal judder. This effect in the long run will shorten a brake's life. Numerical simulation of a disk brake requires the use of nonlinear contact mechanics approach. The simulation is computationally very expensive and difficult to perform. A computer simulation technique has been developed at the DaimlerChrysler Brake Core Group to investigate the hot spot phenomena since 1997. The technique was implemented on 3-D finite element models to simulate frictional contacts between the disk and its pads. Computer code ABAQUS is used for these analyses and computations are performed in Silicon Graphics, Origin 2000 machines.
Technical Paper

Clamp Load Consideration in Fatigue Life Prediction of a Cast Aluminum Wheel Using Finite Element Analysis

2004-03-08
2004-01-1581
Loads generated during assembly may cause significant stress levels in components. Under test conditions, these stresses alter the mean stress which in turn, alters the fatigue life and critical stress area of the components as well. This paper describes the Finite Element Analysis (FEA) procedure to evaluate behavior of a cast aluminum wheel subjected to the rotary fatigue test condition as specified in the SAE test procedure (SAE J328 JUN94). Fatigue life of the wheel is determined using the S-N approach for a constant reversed loading condition. In addition, fatigue life predictions with and without clamp loads are compared. It is concluded that the inclusion of clamp load is necessary for better prediction of the critical stress areas and fatigue life of the wheel.
Technical Paper

A Simple Approach to Selecting Automotive Body-in-White Primary-Structural Materials

2002-07-09
2002-01-2050
A simple strategy for building lightweight automobile body-in-whites (BIWs) is developed and discussed herein. Because cost is a critical factor, expensive advanced materials, such as carbon fiber composites and magnesium, must only be used where they will be most effective. Constitutive laws for mass savings under various loading conditions indicate that these materials afford greater opportunity for mass saving when used in bending, buckling or torsion than in tensile, shear or compression. Consequently, it is recommended that these advanced materials be used in BIW components subject to bending and torsion such as rails, sills, “A-B-C” pillars, etc. Furthermore, BIW components primarily subject to tension, compression, or shear, such as floor pans, roofs, shock towers, etc., should be made from lower cost steel. Recommendations for future research that are consistent with this strategy are included.
Technical Paper

Robust Design of a Catalytic Converter with Material and Manufacturing Variations

2002-10-21
2002-01-2888
A design is robust when the performance targets have been achieved and the effects of variation have been minimized without eliminating the causes of the variation such as manufacturing tolerances, material properties, environmental temperature, humidity, operational wear etc. In recent years several robust design concepts have been introduced in an effort to obtain optimum designs and minimize the variation in the product characteristics [1,2]. In this study, a probabilistic design analysis was performed on a catalytic converter substrate in order to determine the required manufacturing tolerance that results in a robust design. Variation in circularity (roundness) and the ultimate shear stress of the substrate material were considered. The required manufacturing tolerance for a robust design with 1,2 and 3 sigma quality levels was determined. The same manufacturing tolerance for a reliability based design with reliability levels of 85%, 90% and 95% was also determined and compared.
Technical Paper

Beam Element Leaf Spring Suspension Model Development and Assessment Using Road Load Data

2006-04-03
2006-01-0994
Knowledge of the loads experienced by a leaf spring suspension is required for the optimal design of the suspension components and frame. The most common method of representing leaf springs is the SAE 3 link model, which does not give good results in the lateral direction. In this paper, a beam element leaf spring model is developed. This model is validated using data obtained from laboratory tests done on leaf spring assemblies. The model is then subjected to actual road load data measured on the Proving Ground. Lastly, results from the beam element model are presented and compared with results obtained from proving ground tests. Overall, the beam element model gives good results in all directions except in situations where it is subjected to high fore/aft acceleration and high reverse braking events.
Technical Paper

Truck Frame Motion Prediction and Correlation

2006-04-03
2006-01-1257
Accurate motion prediction can be used to evaluate vibrations at seat track and steering wheel. This paper presents the prediction and correlation of truck frame motion from wheel force transducer (WFT) measurements. It is assumed that the method can be used to predict vibrations at seat track and steering wheel for unibody vehicles. Two durability events were used for calculation. WFT measurements were used as inputs applied on frame from suspension. Frame loads were then used as inputs to calculate frame motions using a FEA approach. The predicted frame motions are represented by four exhaust hangers and they are compared with measured motions of the same locations. The correlations include displacement, velocity, and acceleration. It is shown that good correlations are obtained in velocity and displacement. Acceleration shows bigger differences than velocity and displacement.
Technical Paper

Study on Simplified Finite Element Simulation Approaches of Fastened Joints

2006-04-03
2006-01-1268
In this paper, mechanism of fastened joints is described; numerical analyses and testing calibrations are conducted for the possible simplified finite element simulation approaches of the joints; and the best simplified approach is recommended. The approaches cover variations of element types and different ways that the joints are connected. The element types include rigid elements, deformable bar elements, solid elements, shell elements and combinations of these element types. The different ways that the joints are connected include connections of one row of nodes, two row of nodes and alternate nodes in the first and second rows. These simplified simulation approaches are numerically evaluated on a joint of two plates connected by a single fastener. The fundamental loads, bending with shear, shear and tension are applied in the numerical analyses. A detailed model including contact and clamp load are analyzed simultaneously to provide “accurate results”.
Technical Paper

Development of a Computerized Digital Resonance Fatigue Test Controller with Load Feedback Management

2006-04-03
2006-01-1620
In this report, the DCX Stress Lab and the Tool Development & Test Support groups investigated automating a resonant bending crankshaft fatigue test. Fatigue testing, in general, is a laborious process since many samples are needed for analysis. This makes development cost and speed dependant on the component test efficiency. In the case of crankshaft resonant bending testing, both cost and speed are influenced by the manual feedback operation needed to run the current procedure. In order to increase the efficiency of this process, this project sought to automate the following tasks: maintaining the load on the part, reacting to resonance changes in the part, mapping resonance changes, logging the number of cycles, and discerning resonance frequency shift failure modes objectively.
Technical Paper

Light Truck Frame Joint Stiffness Study

2003-03-03
2003-01-0241
Truck frame structural performance of body on frame vehicles is greatly affected by crossmember and joint design. While the structural characteristics of these joints vary widely, there is no known tool currently in use that quickly predicts joint stiffness early in the design cycle. This paper will describe a process used to evaluate the structural stiffness of frame joints based on research of existing procedures and implementation of newly developed methods. Results of five different joint tests selected from current production body-on-frame vehicles will be reported. Correlation between finite element analysis and test results will be shown. Three samples of each joint were tested and the sample variation will be shown. After physical and analytical testing was completed, a Design of Experiments approach was implemented to evaluate the sensitivity of joints with respect to gauge and shape modification.
Technical Paper

Vehicle Cradle Durability Design Development

2005-04-11
2005-01-1003
In this paper, cradle design functional objectives are briefly reviewed and a durability development process is proposed focusing on the cradle loads, stress, strain, and fatigue life analysis. Based upon the proposed design process, sample isolated and non-isolated cradle finite element (FE) models for a uni-body sport utility vehicle (SUV) under different design phases are solved and correlated with laboratory bench and proving ground tests. The correlation results show that the applied cradle models can be used to accurately predict the critical stress spots and fatigue life under various loading conditions.
Technical Paper

CAE Fatigue Prediction of Fuel Tank Straps using Proving Ground Loads

2005-04-11
2005-01-1405
The durability of fuel tank straps is essential for vehicle safety. Extensive physical tests are conducted to verify designs for durability. Due to the complexity of the loads and the fuel-to-tank interaction, computer-aided-engineering (CAE) simulation has had limited application in this area. This paper presents a CAE method for fuel tank strap durability prediction. It discusses the analytical loads, modeling of fuel-to-tank interaction, dynamic analysis methods, and fatigue analysis methods. Analysis results are compared to physical test results. This method can be used in either a fuel-tank-system model or a full vehicle model. It can give directional design guidance for fuel tank strap durability in the early stages of product development to reduce vehicle development costs.
Technical Paper

Truck Body Mount Load Prediction from Wheel Force Transducer Measurements

2005-04-11
2005-01-1404
This paper introduces a reliable method to calculate body mount loads from wheel-force-transducer (WFT) measurements on framed vehicles. The method would significantly reduce time and cost in vehicle development process. The prediction method includes two parts: Hybrid Load Analysis (HLA) that has been used by DaimlerChrysler Corporation and Body Mount Load Analysis (BMLA) that is introduced by this paper for the first time. The method is validated on a body-on-frame SUV and a pickup truck through one proving ground events. The example shown in this paper is for a SUV and one of the most severe events. In HLA, the loads at suspension-to-frame attachments are calculated from spindle loads measured by WFT. In BMLA, body mount loads were calculated using outputs of HLA with detailed finite-element-modeled frame and body. The loads are compared with measured body mount loads. The comparisons are conducted in range, standard deviation (S.D.), and fatigue pseudo-damage.
Technical Paper

An Exploration of Failure Modes in Rolled, Ductile, Cast-Iron Crankshafts Using a Resonant Bending Testing Rig

2005-04-11
2005-01-1906
This report explores the relationship of different failure criteria - specifically, surface cracks, stiffness changes, and two-piece failures - on rolled, ductile, cast-iron crankshafts. Crankshaft samples were closely monitored throughout resonant bending fatigue testing and were taken to near complete fracture. By monitoring resonance shifts of the samples during testing, stiffness changes and cracks were monitored. These data showed that an accelerating frequency shift was sufficient to indicate imminent two-piece failure and that this condition can be used as a failure criterion. Fatigue studies on two different crankshafts using this failure criterion were compared to those using a surface crack failure criterion. This comparison showed that using the surface crack failure criterion erroneously decreased the apparent fatigue life of the crankshaft significantly.
Technical Paper

Exhaust Catalytic Converter Bench Fatigue Test Specification Based on Equivalent Damage

2000-03-06
2000-01-0787
Component bench fatigue testing is a cost-effective way to evaluate the durability of exhaust catalytic converters. A successful bench fatigue test depends on the development of a test specification. The test specification should represent the actual customer duty cycle that the component is exposed to. Based on the concept of equivalent fatigue damage, a systematic approach is presented to obtain the test specification from the acquired road load data. A method based on damage analysis is proposed to determine the effective notch factor, and an empirical relationship is presented to account for the thermal effect on the test specification. The principles and procedures of multiple block testing and constant amplitude testing are also presented.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Effect of Thermal Treatments and Carbon Potential on Bending Fatigue Performance of SAE 4320 Gear Steel

1999-03-01
1999-01-0603
This project investigated the effect of carburizing carbon-potential and thermal history on the bending fatigue performance of carburized SAE 4320 gear steel. Modified-Brugger cantilever bending fatigue specimens were carburized at carbon potentials of 0.60, 0.85, 1.05, and 1.25 wt. pct. carbon, and were either quenched and tempered or quenched, tempered, reheated, quenched, and tempered. The reheat treatment was designed to lower the solute carbon content in the case through the formation of transition carbides and refine the prior austenite grain size. Specimens were fatigue tested in a tension/tension cycle with a minimum to maximum stress ratio of 0.1. The bending fatigue results were correlated with case and core microstructures, hardness profiles, residual stress profiles, retained austenite profiles, and component distortion.
Technical Paper

Vibro-Acoustic Behavior of Bead-Stiffened Flat Panels: FEA, SEA, and Experimental Analysis

1999-05-17
1999-01-1698
Vibration and sound radiation characteristics of bead-stiffened panels are investigated. Rectangular panels with different bead configurations are considered. The attention is focused on various design parameters, such as orientation, depth, and periodicity, and their effects on equivalent bending stiffness, modal density, radiation efficiency and sound transmission. A combined FEA-SEA approach is used to determine the response characteristics of panels across a broad frequency range. The details of the beads are represented in fine-meshed FEA models. Based on predicted surface velocities, Rayleigh integral is evaluated numerically to calculate the sound pressure, sound power and then the radiation efficiency of beaded panels. Analytical results are confirmed by comparing them with experimental measurements. In the experiments, the modal densities of the panels are inferred from averaged mechanical conductance.
X