Refine Your Search

Topic

Search Results

Journal Article

Model-Based Real-Time Testing of Embedded Automotive Systems

2014-04-01
2014-01-0188
The paper presents a model-based approach to testing embedded automotive software systems in a real-time. Model-based testing approach relates to a process of creating test artifacts using various kinds of models. Real-time testing involves the use of a real-time environment to implement test application. Engineers shall use real-time testing techniques to achieve greater reliability and/or determinism in a test system. The paper contains an instruction how to achieve these objectives by proper definition, implementation, execution, and evaluation of test cases. The test cases are defined and implemented in a modeling environment. The execution and evaluation of test results is made in a real-time machine. The paper is concluded with results obtained from the initial deployment of the approach on a large scale in production stream projects.
Journal Article

Technical Issues of 100Mbit/s Ethernet Transmission based on Standard Automotive Wiring Components

2014-04-01
2014-01-0249
The presentation describes a technical solution for 100 Mbit/s Ethernet Data transmission cabling. This solution considers the specific requirements of automotive wiring harness and manufacturing. It bases on standard automotive connectors and headers. Currently the development of automotive electronic architecture considers central ECU or data backbone structure for the upcoming EE architecture (e. g. single ECU for network; SEN). For these structures solid and cost effective data backbone solutions are essential. Ethernet, a wide distributed and well-known bus system for office and industry data distribution provide a wide range of software tools and many physical layer solutions. Several cabling systems are available. Based on this we propose a solution for automotive application.
Journal Article

Application of Auto-Coding for Rapid and Efficient Motor Control Development

2014-04-01
2014-01-0305
In hybrid and electric vehicles, the control of the electric motor is a critical component of vehicle functions such as motoring, generating, engine-starting and braking. The efficient and accurate control of motor torque is performed by the motor controller. It is a complex system incorporating sensor sampling, data processing, controls, diagnostics, and 3-phase Pulse Width Modulation (PWM) generation which are executed in sub-100 uSec periods. Due to the fast execution rates, care must be taken in the software coding phase to ensure the algorithms will not exceed the target processor's throughput capability. Production motor control development often still follows the path of customer requirements, component requirements, simulation, hand-code, and verification test due to the concern for processor throughput. In the case of vehicle system controls, typically executed no faster than 5-10 mSec periods, auto-coding tools are used for algorithm development as well as testing.
Journal Article

New Compact, High Efficiency, Variable Displacement Compressor for the Small Vehicle Segment

2014-04-01
2014-01-0630
As fuel prices continue to rise automotive manufacturers continue to push their suppliers to provide technology that improves the potential fuel efficiency of their applications. In addition there is an increasing trend towards smaller, lighter and more compact vehicles to mitigate the automotive carbon footprint. These movements necessitated the development of a new compact, low mass, variable displacement compressor to match the requirements for these smaller and more efficient vehicles. The new Delphi MVC, or Miniature Variable Compressor, meets these requirements by integrating the high efficiency of our latest swashplate variable compressor design into a compact and lightweight package. This design can be offered in a range of displacements from 80 to 100cc and can be offered as either internally or externally controlled to support the customer's needs.
Journal Article

Localized Cooling for Human Comfort

2014-04-01
2014-01-0686
Traditional vehicle air conditioning systems condition the entire cabin to a comfortable range of temperature and humidity regardless of the number of passengers in the vehicle. The A/C system is designed to have enough capacity to provide comfort for transient periods when cooling down a soaked car. Similarly for heating, the entire cabin is typically warmed up to achieve comfort. Localized heating and cooling, on the other hand, focuses on keeping the passenger comfortable by forming a micro climate around the passenger. This is more energy efficient since the system only needs to cool the person instead of the entire cabin space and cabin thermal mass. It also provides accelerated comfort for the passenger during the cooling down periods of soaked cars. Additionally, the system adapts to the number of passengers in the car, so as to not purposely condition areas that are not occupied.
Journal Article

How Stress Variance in the Automotive Environment will Affect a ‘True’ Value of the Reliability Demonstrated by Accelerated Testing

2014-04-01
2014-01-0722
This paper discusses the effect of the field stress variance on the value of demonstrated reliability in the automotive testing. In many cases the acceleration factor for a reliability demonstration test is calculated based on a high percentile automotive stress level, typically corresponding to severe user or environmental conditions. In those cases the actual field (‘true’) reliability for the population will be higher than that demonstrated by a validation test. This paper presents an analytical approach to estimating ‘true’ field reliability based on the acceleration model and stress variable distribution over the vehicle population. The method is illustrated by an example of automotive electronics reliability demonstration testing.
Journal Article

Fuel Pressure and Charge Motion Effects on GDi Engine Particulate Emissions

2015-04-14
2015-01-0746
The focus of this study is investigation of the influence of fuel system pressure, intake tumble charge motion and injector seat specification - namely the static flow and the plume pattern - on the GDi engine particulate emissions under the homogenous combustion operation. The paper presents the spray characteristics and the single cylinder engine combustion data for the Delphi Multec® 14 GDi multi-hole fuel injector, capable of 40 [MPa] fuel system pressure. It provides results of a study of the influence of fuel pressure increase between 5 [MPa] to 40 [MPa], for three alternative seat designs, on the combustion characteristics, specifically the particulate and gaseous emissions and the fuel consumption. In conjunction with the fuel system pressure, the effect of enhanced charge motion on the combustion characteristics is investigated.
Journal Article

Coupled LES Jet Primary Breakup - Lagrangian Spray Simulation of a GDi Multi-Hole Fuel Injector

2015-04-14
2015-01-0943
This paper presents results of a coupling of the Volume-of-Fluid Large-Eddy simulation (VOF-LES) of the jet primary breakup with a Lagrangian stochastic spray simulation of a GDi multi-hole injector. The objective is to assess the potential of replacing the phenomenological models of jet primary atomization with the stochastic parcel size - velocity data extracted from the VOF-LES analysis. The paper describes the methodology and assesses the predictive capability achieved, through comparison of the Lagrangian far-field spray simulation results with the complete experimental spray characterization data under the atmospheric ambient conditions. The injector sac-nozzle flow and jet primary breakup simulation is performed with the Open-FOAM code. The simulation of the spray development processes - of propagation, evaporation and secondary atomization - is performed with the AVL-FIRE commercial CFD code adopting the standard Lagrangian discrete droplet method.
Technical Paper

Designed Experiment to Evaluate the Canning Strength of Various High Cell Density / Ultra Thin Wall Ceramic Monoliths

2001-09-24
2001-01-3663
High cell density (HCD) (≥ 600 cpsi) and /or ultra thin wall (UTW) (≤ 4 mil) extruded ceramic monolith substrates are being used in many new automotive catalyst applications because they offer (1) increased geometric surface area, (2) lower thermal mass, (3) increased open frontal area and (4) higher heat and mass transfer rates. Delphi has shown in previous papers how to use the effectiveness, NTU theory, to optimize the various benefits of these HCD / UTW catalysts. A primary disadvantage of these low solid fraction substrates is their reduced structural strength, as measured by a 3-D hydrostatic (isostatic) test. The weakest of these new substrates is only 10 to 20% as strong as standard 400 × 6.5 substrates. Improved converter assembly methods with lower, more uniform forces will likely be required to successfully assemble converters with such weak substrates in production.
Technical Paper

A Non Traditional Solution for High Vibration Connection Systems

2014-04-01
2014-01-0221
As automotive and commercial vehicle OEM's continue their quest to reduce cost, product selection, quality, and reliability must be maintained. On-engine and wheel located connection systems create the greatest challenges due to the extreme levels of vibration. In the past, devices were fewer, and there where less direct connects in high vibration locations (Engine/ wheel sensors, electronic controllers, fuel injectors). Instead, small wire harnesses (“pigtails”) were commonly used. These pigtails can dampen the effect of the environment which includes mild to severe vibration by keeping the environmental effect away from the electrical connection contact point. Electrically connecting directly to the device creates new challenges in the connection system with the increased threat of fretting corrosion. Suppliers supporting OEM's are attempting to meet these direct connect requirements with lubrication, precious metal plating, and high contact force contacts.
Technical Paper

Modeling of the Impact of Ultrasonic Welding of Harness on the Terminals Integrity

2014-04-01
2014-01-0224
The ultrasonic (US) welding of wires in automotive harnesses is increasingly used as an alternative to mechanical splices. However, this welding process may harm the electrical terminals crimped on the wires ends as a result on the energy propagation along the wire up the terminal with a frequency that is close to the terminals' natural frequencies. The modeling of the ultrasonic welding had been investigated by several authors from the process and weld strength perspective but the modeling of its effect on electrical terminals in automotive harnesses has not been given much attention in the literature. This paper describes and illustrates approaches used for modeling of the impact of the US welding on the electrical terminals in terms of stress and deformation from qualitative and quantitative perspectives and the related benefits/limitations from predictive standpoint. Illustrations are given on an actual terminal with respect to a typical ultrasonic welding process.
Technical Paper

Development of a Low-Noise High Pressure Fuel Pump for GDi Engine Applications

2013-04-08
2013-01-0253
Fuel systems associated with Gasoline Direct Injection (GDi) engines operate at pressures significantly higher than Port Fuel Injection (PFI) engine fuel systems. Because of these higher pressures, GDi fuel systems require a high pressure fuel pump in addition to the conventional fuel tank lift pump. Such pumps deliver fuel at high pressure to the injectors multiple times per engine cycle. With this extra hardware and repetitive pressurization events, vehicles equipped with GDi fuel systems typically emit higher levels of audible noise than those equipped with PFI fuel systems. A common technique employed to cope with pump noise is to cover or encase the pump in an acoustic insulator, however this method does not address the root causes of the noise. To contend with the consumer complaint of GDi system noise, Delphi and Magneti Marelli have jointly developed a high pressure fuel pump with reduced audible output by concentrating on sources of noise generation within the pump itself.
Technical Paper

Force Distribution on Catalysts During Converter Assembly

2000-03-06
2000-01-0222
Thinwall substrates used in modern catalytic converters are more sensitive to assembly and operating forces. Various converter assembly processes are characterized using real time force transducer technology. The force distribution data from these assembly methods are presented. The analysis of this data leads to recommendations for packaging of converters depending on catalyst strength.
Technical Paper

Methodology to Compare Effectiveness of Lubricating Additives in a Polymeric Matrix

2014-04-01
2014-01-1034
A majority of the plastics manufacturing operations are dependent on the formability of the molten thermoplastics. Ability of the material to flow at a set temperature influences the formability and the overall polymer melt process. Lubricating additive technologies are being developed to engineer the melt flow performance of the resin, promoting the compounding and molding process such as to reduce torque on the motor, reduced shear degradations, enhance uniform filling of hard-to-fill section, promoting thin wall molding, and influence the overall cycle time. Various lubricants are used in formulations to supplement superior flow and metal release with minimal effect on mechanical properties. This paper discusses the methodology to characterize the effectiveness of melt flow additives through comparing two different processing aids in Polybutylene terephthalate (PBT) polyester filled and unfilled matrix and imply differences in processing.
Technical Paper

Post-Molding Crosslinking of Polyethylene in Automotive Connection Systems

2014-04-01
2014-01-1038
Twenty plies of low density polyethylene (LDPE) were stacked and irradiated with 200 kGy of 5 MeV electron beam. The plies were analyzed by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) for crosslink density using melting point depression and equilibrium storage modulus respectively. Infra-red spectroscopic analysis was conducted to examine the samples for the presence of chemical modification. The thermal stability of the irradiated samples and an unexposed control was investigated using Thermogravimetric Analysis (TGA). Results were utilized in assessing the viability of crosslinking products after the molding process to produce articles with improved resistance to temperature.
Technical Paper

Primary Atomization of a GDi Multi-Hole Plume Using VOF-LES Method

2014-04-01
2014-01-1125
This study is concerned with quantitative analysis of the primary atomization, regarding the droplet size-velocity distribution function, of a multi-hole GDi plume through application of the Volume-of-Fluid Large Eddy Simulation (VOF-LES) method. The distinguishing feature of this study is the inclusion of an accurate seat /nozzle flow domain into the simulation. A VOF-LES study of the seat-nozzle flow and the near-field primary atomization of a single plume of a GDi multi-hole seat is performed. The geometry pertains to a purpose-built 3-hole GDi seat with three identical flow hole and counter-bore nozzles, arranged with 120° circumferential spacing. The VOF-LES prediction of the jet primary breakup structure and near-field macroscale is compared with spray imaging data. The droplet size and velocity distributions within a 4mm vicinity of the nozzle are analyzed. The results show production of a wide droplet size distribution through the jet primary atomization.
Technical Paper

Acoustic Holography for High Pressure Fuel Injector Noise Measurements

2014-04-01
2014-01-1679
The audible noise characteristics of direct injectors are important to OEM customers when selecting a high pressure gasoline fuel injector. The activation noise is an undesirable aspect that needs to be minimized through injector design, injector mounting, and acoustic treatments. Experimentally identifying the location and frequency of noise sources is beneficial to the improvement of injector designs. Acoustic holography is a useful tool in locating these noise sources by measuring a sound pressure field with multiple microphones and using this field to estimate the source location. For injector testing, the local boundary conditions of the noise source will affect the resultant sound field. Therefore, how the injector is mounted within the test fixture will change the resultant noise field measured. In this study, the process of qualifying an acoustic holography fixture using measurement system analysis for GDi fuel injector testing will be documented.
Technical Paper

Innovative Sprays and Particulate Reduction with GDi Injectors

2014-04-01
2014-01-1441
Innovative nozzle hole shapes for inwardly opening multi-hole gasoline direct injectors offer opportunities for improved mixture formation and particulate emissions reduction. Compared to increased fuel pressure, an alternative associated with higher system costs and increased pumping work, nozzle hole shaping simply requires changes to the injector nozzle shape and may have the potential to meet Euro 6 particulate regulations at today's 200 bar operating pressure. Using advanced laser drilling technology, injectors with non-round nozzle holes were built and tested on a single-cylinder engine with a centrally-mounted injector location. Particulate emissions were measured and coking deposits were imaged over time at several operating fuel pressures. This paper presents spray analysis and engine test results showing the potential benefits of alternative non-round nozzle holes in reducing particulate emissions and enhancing robustness to coking with various operating fuel pressures.
Technical Paper

The Effects of GDi Fuel Pressure on Fuel Economy

2014-04-01
2014-01-1438
To meet future particulate number regulations, one path being investigated is higher fuel pressures for direct injection systems. At operating pressures of 30 MPa to 40 MPa, the fuel system components must be designed to withstand these pressures and additional power is required by the pump to pressurize the fuel to higher pressures than the nominal 15MPa to 20MPa in use today. This additional power to the pump can affect vehicle fuel economy, but may be partially offset by increases in combustion efficiency due to improved spray mixture preparation. This paper examines the impact on fuel economy from increased system fuel pressures from a combination of test results and simulations. A GDi pump and valvetrain model has been developed and correlated to existing pump torque measurements and subsequently used to predict the increase in torque and associated impact on fuel economy due to higher GDi system pressures.
Technical Paper

Beyond Euro VI - Development of A Next Generation Fuel Injector for Commercial Vehicles

2014-04-01
2014-01-1435
Delphi Diesel Systems (DDS) - Heavy Duty Business is developing a new range of Ultra High Pressure Common Rail Fuel Injectors with the functionality to allow the combustion heat release to be heavily adapted during operation. This allows the injector performance to be simultaneously optimised across a broad range of engine conditions, removing the constraints of having to select a single rate shape type for all operating conditions. This new technology range builds on the performance of Delphi's 2700 bar Fuel Systems of F2E, F2P and F2R, whilst adding in new levels of injector control, beyond what is available in the current market. In addition to this new functionality, Delphi's new Heavy Duty Injector range also demonstrates greatly reduced leakage and improved accuracy of fuel control. This paper reviews the benefits and possibilities of this new injector technology.
X