Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Cooling with Augmented Heated and Cooled Seats

2007-04-16
2007-01-1193
Heating and cooling automotive seats are a relatively new technology that delivers conditioned air to the occupant's seat providing an overall improvement in occupant comfort. This paper combines experimental and computational data to describe the effect of seat cooling on occupant comfort. Included are (1) a review of current seat cooling technologies, (2) the introduction of an innovative seat cooling technology using the vehicle's HVAC system, (3) the inclusion of thermal comfort seat strategy for improving overall comfort, and (4) validation of the thermal comfort seat strategy with experimental data. The paper focuses on the occupant's overall comfort in cooling mode under different ambient conditions.
Technical Paper

Heating Aspects of Augmented Heated and Cooled Seats

2008-04-14
2008-01-0831
Heating and cooling of automotive seats is a relatively new technology that delivers conditioned air to the occupant's seat providing an overall improvement in passenger comfort. This paper combines experimental and computational data to describe the effect of seat heating on passenger comfort. Included are: (1) a review of current seat heating technologies, (2) the introduction of an innovative seat heating technology using the vehicle's HVAC system, (3) the inclusion of thermal comfort seat strategy for improving overall comfort, and (4) validation of the thermal comfort seat strategy with experimental data. The paper focuses on the occupant's overall comfort in heating mode under different ambient conditions.
Technical Paper

Comfort and Usability of the Seat Belts

2001-03-05
2001-01-0051
Seat belts are the primary occupant-protection devices for vehicle crashes. Field statistics show that proper usage of seat belts substantially contributes to decreases in the fatality rate and injury level. To collect first-hand information regarding seat belt comfort and usability, a questionnaire survey was conducted. The most significant problems were found as belt trapping in the door, awkward negotiating with clothes, belt twisting, belt locking up, and difficulty to locate the buckle. The survey results indicated that drivers who are over 40 years old have more complaints than younger drivers. When the driver's age increases to 55 and above, belt pulling force and inappropriate and loose fitting of the belt on the body become major issues. Female drivers have more complaints than male drivers. Short statured drivers need both hands to pull and guide the retracting of the belt.
Technical Paper

Thermal Comfort Prediction and Validation in a Realistic Vehicle Thermal Environment

2012-04-16
2012-01-0645
The focus of this study is to validate the predictive capability of a recently developed physiology based thermal comfort modeling tool in a realistic thermal environment of a vehicle passenger compartment. Human subject test data for thermal sensation and comfort was obtained in a climatic wind tunnel for a cross-over vehicle in a relatively warm thermal environment including solar load. A CFD/thermal model that simulates the vehicle operating conditions in the tunnel, is used to provide the necessary inputs required by the stand-alone thermal comfort tool. Comparison of the local and the overall thermal sensation and comfort levels between the human subject test and the tool's predictions shows a reasonably good agreement. The next step is to use this modeling technique in designing and developing energy-efficient HVAC systems without compromising thermal comfort of the vehicle occupants.
Technical Paper

The Effectiveness of Adjustable Pedals Usage

2000-03-06
2000-01-0172
This study evaluates the comfort benefits of adjustable pedals by determining their effect on the distance between the occupant and steering wheel, occupant posture and foot kinematics. For the study, 20 volunteers were tested in a small and large vehicle equipped with adjustable pedals. Twenty volunteers were tested in a small and large vehicle at 3 pedal positions: normal, comfortable and maximum tolerable. In the small car, the decrease in ankle-to-steering wheel distance between the normal and comfortable position was higher in the short-statured group than the medium group. The mean change in chest-to-steering wheel distance was about 50 mm in the medium and in the order of 40 mm in the short group. The seatback angle increased by 2° in the medium group and decreased by 3° in the short group. In the large car, the decrease in ankle-to-steering wheel distance between comfortable and the normal position was about 70 mm in the short-statured and medium group.
Technical Paper

Consumers, Electronics, and the Link to Hybrid Vehicles and the Environment

2000-11-01
2000-01-C045
The interdependence of consumer features, new electronic and electrical architectures and hybrid propulsion systems are examined. There are two major forces driving future vehicle electronic and electrical systems, one is consumer demand for comfort and safety, and two is the demand for reduced fuel consumption and emissions. These forces are linked by the use of electronics to control vehicle energy generation and usage while providing managed solutions to these demands. Automobile consumer features are discussed and the case is made that these features will require more electric power to be installed on the vehicle. The presence of this increased electric power will then enable the hybrid vehicle functions that will benefit fuel economy and emissions performance.
Technical Paper

Energy Efficiency Impact of Localized Cooling/Heating for Electric Vehicle

2015-04-14
2015-01-0352
The present paper reports on a study of the HVAC energy usage for an EREV (extended range electric vehicle) implementation of a localized cooling/heating system. Components in the localized system use thermoelectric (TE) devices to target the occupant's chest, face, lap and foot areas. A novel contact TE seat was integrated into the system. Human subject comfort rides and a thermal manikin in the tunnel were used to establish equivalent comfort for the baseline and localized system. The tunnel test results indicate that, with the localized system, HVAC energy savings of 37% are achieved for cooling conditions (ambient conditions greater than 10 °C) and 38% for heating conditions (ambient conditions less than 10 °C), respectively based on an annualized ambient and vehicle occupancy weighted method. The driving range extension for an electric vehicle was also estimated based on the HVAC energy saving.
X