Refine Your Search

Topic

Search Results

Journal Article

Laser Profilometry For Non-Contact Automated Countersink Diameter Measurement

2014-09-16
2014-01-2255
Automated countersink measurement methods which require contact with the workpiece are susceptible to a loss of accuracy due to cutting debris and lube build-up. This paper demonstrates a non-contact method for countersink diameter measurement on CFRP which eliminates the need for periodic cleaning. Holes are scanned in process using a laser profilometer. Coordinates for points along the countersink edge are processed with a unique filtering algorithm providing a highly repeatable estimate for major and minor diameter.
Journal Article

Rivet and Bolt Injector with Bomb Bay Ejection Doors

2013-09-17
2013-01-2151
Electroimpact's newest riveting machine features a track-style injector with Bomb Bay Ejection Doors. The Bomb Bay Ejection Doors are a robust way to eject fasteners from track style injector. Track style injectors are commonly used by Electroimpact and others in the industry. Using the Bomb Bay Doors for fastener ejection consists of opening the tracks allowing very solid clearing of an injector when ejecting a fastener translating to a more reliable fastener delivery system. Examples of when fastener ejection is needed are when a fastener is sent backwards, when there are two in the tube, or when a machine operator stops or resets the machine during a fastening cycle. This method allows fasteners to be cleared in nearly every situation when ejecting a fastener is required. Additional feature of Electroimpact's new injection system is integrated anvil tool change.
Journal Article

Automated In-Process Inspection System for AFP Machines

2015-09-15
2015-01-2608
In many existing AFP cells manual inspection of composite plies accounts for a large percentage of production time. Next generation AFP cells can require an even greater inspection burden. The industry is rapidly developing technologies to reduce inspection time and to replace manual inspection with automated solutions. Electroimpact is delivering a solution that integrates multiple technologies to combat inspection challenges. The approach integrates laser projectors, cameras, and laser profilometers in a comprehensive user interface that greatly reduces the burden on inspectors and decreases overall run time. This paper discusses the implementation of each technology and the user interface that ties the data together and presents it to the inspector.
Journal Article

One Piece AFP Spar Manufacture

2011-10-18
2011-01-2592
Manufacturing C cross-sectional components with high aspect ratios out of carbon fiber reinforced composites is desirable by the aircraft industry. Modular AFP heads with short, fixed tow path have the fundamental performance characteristics required to successfully and productively automate the production of these part families. Aircraft parts in this family include wing spars, stringers, and fuselage frames.
Journal Article

Synthesizing Metrology Technologies to Reduce Engineering Time for Large CNC Machine Compensation

2011-10-18
2011-01-2780
Very large multi-axis CNC machines offer a special challenge for efficient and accurate machine compensation. Aerospace applications demand tight tolerances, but conventional compensation methods become expensive for large machines. Volumetric compensation offers an approach for reducing costs and improving accuracies. A unique control architecture enabled by volumetric compensation enables the use of a single part program by multiple machines. Combining multiple technologies (a proprietary volumetric compensation solver program, Spatial Analyzer, API's Active Target, a laser tracker and bespoke CNC-Tracker communication software for measurement triggering) significantly reduces machine compensation time. Available analysis tools also enable the engineer to evaluate measurement uncertainties and determine the best locations for additional stations as well as quantify the accuracy benefits such stations would offer.
Journal Article

Automated Metrology Solution to Reduce Downtime and De-Skill Tooling Recertification

2012-09-10
2012-01-1869
Wing and fuselage aircraft structures require large precise tools for assembly. These large jigs require periodic re-certification to validate jig accuracy, yet metrology tasks involved may take the tool out of service for a week or more and typically require highly specialized personnel. Increasing the time between re-certifications adds the risk of making out-of-tolerance assemblies. How can we reduce jig re-certification down time without increasing the risk of using out-of-tolerance tooling? An alternative, successfully tested in a prototype tool, is to bring automated metrology tools to bear. Specifically, laser tracker measurements can be automated through a combination of off-the-shelf & custom software, careful line-of-sight planning, and permanent embedded targets. Retro-reflectors are placed at critical points throughout the jig. Inaccessible (out of reach) tool areas are addressed through the use of low cost, permanent, shielded repeatability targets.
Technical Paper

Case Study on the Challenges and Responses of a Large Turnkey Assembly Line for the C919 Wing

2020-03-10
2020-01-0010
Design and production of an assembly system for a major aircraft component is a complex undertaking, which demands a large-scale system view. Electroimpact has completed a turnkey assembly line for producing the wing, flap, and aileron structures for the COMAC C919 aircraft in Xi’an, China. The project scope includes assembly process design, material handling design, equipment design, manufacture, installation, and first article production support. Inputs to the assembly line are individual component parts and small subassemblies. The assembly line output is a structurally completed set of wing box, flaps, and ailerons, for delivery to the Final Assembly Line in Shanghai. There is a trend toward defining an assembly line procurement contract by production capacity, versus a list of components, which implies that an equipment supplier must become an owner of production processes.
Journal Article

Increasing Machine Accuracy by Spatially Compensating Large Scale Machines for Use in Constructing Aerospace Structures

2013-09-17
2013-01-2298
Starting in 2003 Electroimpact began development on a comprehensive kinematic and compensation software package for machines with large envelopes. The software was first implemented on Electroimpact's Automatic Fiber Placement (AFP) equipment. Implementation became almost universal by 2005. By systematically collecting tracker measurements at various machine poses and then using this software to optimize the kinematic parameters of the machine, we are able to reliably achieve machine positional accuracy of approximately 2x the uncertainty of the measurements themselves. The goal of this paper is to document some of the features of this system and show the results of compensation in the hope that this method of machine compensation or similar versions will become mainstream.
Journal Article

Automated Floor Drilling Equipment for the 767

2014-09-16
2014-01-2270
A new portable floor drilling machine, the 767AFDE, has been designed with a focus on increased reach and speed, ease-of-use, and minimal weight. A 13-foot wide drilling span allows consolidation of 767 section 45 floor drilling into a single swath. A custom CNC interface simplifies machine operations and troubleshooting. Four servo-driven, air-cooled spindles allow high rate drilling through titanium and aluminum. An aluminum space frame optimized for high stiffness/weight ratio allows high speed operation while minimizing aircraft floor deflection. Bridge track tooling interfaces between the machine and the aircraft grid. A vacuum system, offline calibration plate, and transportation dolly complete the cell.
Technical Paper

Refurbishment of 767 ASAT Drill-Rivet-Lockbolt Machines

2010-09-28
2010-01-1844
Boeing has relied upon the 767 ASAT (ASAT1) since 1983 to fasten the chords, stiffeners and rib posts to the web of the four 767 wing spars. The machine was originally commissioned with a Terra five axis CNC control. The Terra company went out of business and the controls were replaced with a custom DOS application in 1990. These are now hard to support so Boeing solicited proposals. Electroimpact proposed to retrofit with a Fanuc 31I CNC, and in addition, to replace all associated sensors, cables and feedback systems. This work is now complete on two of the four machines. Both left front and right front are in production with the new CNC control.
Technical Paper

Coated Rivet Dies: A Dramatic Improvement in Rivet Interference Profile

2016-09-27
2016-01-2084
Successfully riveting aerospace fatigue-rated structure (for instance, wing panels) requires achieving rivet interference between a minimum and a maximum value in a number of locations along the shank of the rivet. In unbalanced structure, where the skin is much thicker than the stringer, this can be particularly challenging, as achieving minimum interference at the exit of the skin (D2) can often be a problem without exceeding the maximum interference at the exit of the stringer (D4). Softer base materials and harder, higher-strength rivets can compound the problem, while standard manufacturing variations in hardness of part and rivet materials can cause repeatability issues in the process. This paper presents a solution that has been successfully implemented on a production commercial aircraft. The application of a special coating on the stringer side die dramatically reduces interference at the exit of the stringer, which in some instances resulted in a reduction of over 38%.
Technical Paper

High-Accuracy Articulated Mobile Robots

2017-09-19
2017-01-2095
The advent of accuracy improvement methods in robotic arm manipulators have allowed these systems to penetrate applications previously reserved for larger, robustly supported machine architectures. A benefit of the relative reduced size of serial-link robotic systems is the potential for their mobilization throughout a manufacturing environment. However, the mobility of a system offers unique challenges in maintaining the high-accuracy requirement of many applications, particularly in aerospace manufacturing. Discussed herein are several aspects of mechanical design, control, and accuracy calibration required to retain accurate motion over large volumes when utilizing mobile articulated robotic systems. A number of mobile robot system architectures and their measured static accuracy performance are provided in support of the particular methods discussed.
Technical Paper

Sharklet Brings New Technology to Electroimpact E4000 LVER Machine

2012-09-10
2012-01-1853
Electroimpact's E4000 LVER riveting machine entered service in 1998 assembling A320/A321 upper wing panels at the Airbus wing manufacturing facility in Broughton, Wales. Airbus's recent introduction of the Sharklet modification to the wings of the A320 family of aircraft necessitated a number of changes to the machine and fixture to accommodate the revised wing geometry. Electroimpact and Airbus also worked together to identify a wide range of machine improvements and updates. A short list of the changes made to the machine includes a new CNC, new motors, scales, spindles, and new technologies such as laser tracers and normality sensors. The end result is a faster, more accurate machine with state-of-the-art controls ready to support Airbus's A320/321 wing panel assembly for the next 15 years.
Technical Paper

Frame-Clip Riveting End Effector

2013-09-17
2013-01-2079
A frame-clip riveting end effector has been developed for installing 3.97mm (5/32) and 4.6mm (3/16) universal head aluminum rivets. The end effector can be mounted on the end of a robot arm. The end effector provides 35.6 kNt (8000 lbs) of rivet upset. Rivets can be installed fifteen millimeters from the IML. The clearance allowed to rivet centerline is 150 millimeters. The riveting process features a unique style of rivet fingers for the universal head rivet. These fingers allow the rivet to be brought in with the ram. This differentiates from some styles of frame-clip end effectors in which the rivet is blown into the hole. The paper shows the technical components of the end effector in sequence: the pneumatic clamp, rivet insert and upset. The end effector will be used for riveting shear ties to frames on the IML of fuselage panels.
Technical Paper

High Path Accuracy, High Process Force Articulated Robot

2013-09-17
2013-01-2291
Spirit AeroSystems' process of producing carbon fiber nacelle panels requires heat and high force plus a high level of dynamic accuracy. Traditionally this would require large and expensive custom machines. A low cost robotic alternative was developed to perform the same operations utilizing an off-the-shelf 6-axis robot mated to a servo-controlled linear axis. Each of the 7 axes is enhanced with secondary position encoders and the entire system is controlled by a Siemens 840Dsl CNC. The CNC handles all process functions, robot motion, and executes software technologies developed for superior dynamic positional accuracy, including enhanced kinematics. The layout of the work cell allowed the robot to span two work zones so that parts can be loaded and unloaded while the robot continues working in the adjacent zone.
Technical Paper

Integrated Hole and Countersink Inspection of Aircraft Components

2013-09-17
2013-01-2147
Precision hole inspection is often required for automated aircraft assembly. Direct contact measurement has been proven reliable and accurate for over 20 years in production applications. At the core of the hole measurement process tool are high precision optical encoders for measurement of diameter and countersink depth. Mechanical contact within the hole is via standard 2-point split ball tips, and diametric data is collected rapidly and continuously enabling the system to profile the inner surface at 0 and 90 degrees. Hole profile, countersink depth, and grip length data are collected in 6 seconds. Parallel to the active process, auto-calibration is performed to minimize environmental factors such as thermal expansion. Tip assemblies are selected and changed automatically. Optional features include concave countersink and panel position measurement.
Technical Paper

Narrow Fixture Improves One-Up Panel Assembly

2022-03-08
2022-01-0015
The use of a narrow profile posts or Skinny Fixture increases build speed and flexibility while improving quality of aluminum aircraft panels fastened in one-up assembly cells. Aluminum aircraft panels are made up of an outer skin and a series of stringers. The components must be held in accurate relative positions while preliminary fasteners are installed. By using narrow fixture posts in conjunction with deep drop stringer side machine tools, the fastening machine can apply fasteners at tighter initial spacing. The spacing is gained by providing clearances that allows the centerline of the fastening system to work closer to the post than previously achieved with deep fixture posts and short stringer side tooling. At one time the standard process was to hold the parts in manual tack cells and after tacking the panels are moved to a separate automated fastening cell. One-up assembly fixtures improve the process by reducing manual processes while minimizing component handling.
Technical Paper

Automatic Drilling and Fastening System for Large Aircraft Doors

2019-03-19
2019-01-1346
Electroimpact has developed a system for drilling and fastening of cargo door structures which efficiently addresses many of the manufacturing challenges that such parts present. Challenges to door automation include 1) the presence of an inner skin that must be processed, in addition to the outer skin, and 2) a stiff frame structure, which makes the clamping and drilling processes that are typical to automated fastening machines very unforgiving of any errors in workpiece positioning. In this case, the manufacturing cell was to be installed in an existing facility with very limited ceiling height, further complicating the system and process design. New methods were devised to solve these problems, and the solutions found will likely have utility in future applications.
Technical Paper

Magnetic Safety Base for Automated Riveting and Bolting

2016-09-27
2016-01-2087
There is an ever-present risk for the lower ram on a riveting machine to suffer a damaging collision with aircraft parts during automated fastening processes. The risk intensifies when part frame geometry is complex and fastener locations are close to part features. The lower anvil must be led through an obstructive environment, and there is need for crash protection during side-to-side and lowering motion. An additional requirement is stripping bolt collars using the downward motion of the lower ram, which can require as much as 2500 pounds of pulling force. The retention force on the lower anvil would therefore need to be in excess of 2500 pounds. To accomplish this a CNC controlled electromagnetic interface was developed, capable of pulling with 0-3400 pounds. This electromagnetic safety base releases when impact occurs from the sides or during downward motion (5 sided crash protection), and it retains all riveting and bolting functionality.
X