Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Automated Surface Preparation of Embraer’s Commercial Jet Fuselage for Painting Process

2019-03-19
2019-01-1339
The surface preparation of the fuselage prior to painting is largely done manually in the Aerospace Industry; utilizing scrubbers, sanders, chemicals, and manlifts resulting in safety and ergonomic issues without delivering a consistent result. The automation of the process employing robots, vision systems, machine movers, and automated process equipment provided the following benefits: Improved Safety and Ergonomics Reduced exposure to hazardous materials and working conditions Improved Consistency and Quality Improved Production Capabilities and Reduced Labor Costs Reduced Material Usage Less weight Lower environmental risks Lower cost This paper will describe the equipment used and the process changes required to automate the surface preparation process, then discuss the benefits that were realized.
Technical Paper

Aircraft Personal Ventilation: A CFD Thermal Comfort Analysis

2019-03-19
2019-01-1347
Nowadays, many different research efforts are being conducted to develop personal ventilation system for aircrafts. A numerical CFD study is presented as an example analysis, finding the relationship between the initial jet temperature and mass flow to the local thermal comfort on the head, chest and face. Typical regional airplane cabin geometry was used with two passengers seated. The passengers were modeled with numerical manikins with body and arms. The study first investigated whether the personal ventilation jet has influence on only one of the passengers or if it also affects the other. It was demonstrated that the proposed personal ventilation outlet can influence local thermal comfort with minimum influence on the adjacent passenger. The equivalent temperatures on the head, chest and face were calculated with different initial jet temperatures.
Technical Paper

Lattice Boltzmann Simulations of Flow Over an Iced Airfoil

2019-06-10
2019-01-1945
This paper presents an aerodynamic degradation study of an iced airfoil, using the Lattice Boltzmann approach with the commercial software PowerFLOW. Three-dimensional numerical simulations were performed with an extruded constant section of the GLC-305 airfoil with a leading-edge double-horn ice shape using periodic boundary conditions. The freestream Reynolds number, based on the chord, is 3.5 million and the Mach number is 0.12. An extensive comparison of the main flow features with experimental data is performed, including aerodynamic coefficients, pressure coefficient distributions, velocity and turbulence contours along with its profiles at several positions, and stagnation streamlines. The drag coefficient agrees well with experiments, in spite of a small shift. Two different wind tunnel measurements, using different measurement techniques, were compared to the CFD results, which mostly stayed in between the experimental data.
Technical Paper

3D Computational Methodology for Bleed Air Ice Protection System Parametric Analysis

2015-06-15
2015-01-2109
A 3D computer model named AIPAC (Aircraft Ice Protection Analysis Code) suitable for thermal ice protection system parametric studies has been developed. It was derived from HASPAC, which is a 2D anti-icing model developed at Wichita State University in 2010. AIPAC is based on the finite volumes method and, similarly to HASPAC, combines a commercial Navier-Stokes flow solver with a Messinger model based thermodynamic analysis that applies internal and external flow heat transfer coefficients, pressure distribution, wall shear stress and water catch to compute wing leading edge skin temperatures, thin water flow distribution, and the location, extent and rate of icing. In addition, AIPAC was built using a transient formulation for the airfoil wall and with the capability of extruding a 3D surface grid into a volumetric grid so that a layer of ice can be added to the computational domain.
X