Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

Design Status of the Closed-Loop Air Revitalization System ARES for Accommodation on the ISS

2007-07-09
2007-01-3252
During the last years extensive work has been done to design and develop the Closed-Loop Air Revitalization System ARES. The potential of ARES e.g. as part of the ISS ECLSS is to significantly reduce the water upload demand and to increase the safety of the crew by reducing dependence on re-supply flights. The design is adapted to the interfaces of the new base lined Russian MLM module as possible location for a future installation of ARES. Due to the lack of orbital support equipment and interfaces to a waste water bus, to a feed water supply line and due to the availability of only one single vent line it was necessary to make the ARES process water loop as independent as possible from the host vehicle. Another optimization effort was to match the CO2 desorption profile with the available hydrogen flow to achieve a sufficient water recovery performance, while meeting all related safety requirements, minimizing complexity and improving reliability.
Technical Paper

Energy Analysis of an Enclosed, Long-Duration Planetary Habitat Test-Bed

1998-07-13
981711
An energy balance was performed on the life support equipment used during the Phase III, 90-day, human Lunar-Mars Life Support Test Project at the Johnson Space Center. The purpose of the analysis was to account for all the energy sources, uses, and losses in the test-bed. Knowledge from this task may allow more energy efficient designs to be developed. Control volumes were defined and energy balance equations were generated for major systems. The analyses succeeded in balancing the energy fairly well for several systems. Further, the data showed that inefficiencies existed, and means of design optimization were subsequently suggested.
Technical Paper

Testing and Analysis of an Environmental System Test Stand

2003-07-07
2003-01-2361
Thermal control systems for space application plant growth chambers offer unique challenges. The ability to control temperature and humidity independently gives greater flexibility for optimizing plant growth. Desired temperature and relative humidity range vary widely from 15°C to 35°C and 65% to 85% respectively. On top of all of these variables, the thermal control system must also be conservative in power and mass. These requirements to develop and test a robust thermal control system for space applications led to the design and development of the Environmental System Test Stand (ESTS) at NASA Johnson Space Center (JSC). The ESTS was designed to be a size constrained, environmental control system test stand with the flexibility to allow for a variety of thermal and lighting technologies. To give greater understanding to the environmental control system, the development of the ESTS included both mathematical models and the physical test stand.
Technical Paper

Comparison of Equivalent System Mass (ESM) of Yeast and Flat Bread Systems

2003-07-07
2003-01-2618
The Equivalent System Mass (ESM) metric developed by NASA describes and compares individual system impact on a closed system in terms of a single parameter, mass. The food system of a Mars mission may encompass a large percentage of total mission ESM, and decreasing this ESM would be beneficial. Yeast breads were made using three methods (hand & oven, bread machine, mixer with dough hook attachment & oven). Flat breads were made using four methods (hand & oven, hand & griddle, mixer with dough hook attachment & oven, mixer with dough hook attachment & griddle). Two formulations were used for each bread system (scratch ingredients, commercial mix). ESM was calculated for each of these scenarios. The objective of this study was to compare the ESM of yeast and flat bread production for a Martian surface outpost. Method (equipment) for both types of bread production was demonstrated to be the most significant influence of ESM when one equipment use was assumed.
Technical Paper

Innovative Schematic Concept Analysis for a Space Suit Portable Life Support Subsystem

2006-07-17
2006-01-2201
Conceptual designs for a space suit Personal Life Support Subsystem (PLSS) were developed and assessed to determine if upgrading the system using new, emerging, or projected technologies to fulfill basic functions would result in mass, volume, or performance improvements. Technologies were identified to satisfy each of the functions of the PLSS in three environments (zero-g, Lunar, and Martian) and in three time frames (2006, 2010, and 2020). The viability of candidate technologies was evaluated using evaluation criteria such as safety, technology readiness, and reliability. System concepts (schematics) were developed for combinations of time frame and environment by assigning specific technologies to each of four key functions of the PLSS -- oxygen supply, waste removal, thermal control, and power. The PLSS concepts were evaluated using the ExtraVehicular Activity System Sizing Analysis Tool, software created by NASA to analyze integrated system mass, volume, power and thermal loads.
Technical Paper

Spacesuit Radiation Shield Design Methods

2006-07-17
2006-01-2110
Meeting radiation protection requirements during EVA is predominantly an operational issue with some potential considerations for temporary shelter. The issue of spacesuit shielding is mainly guided by the potential of accidental exposure when operational and temporary shelter considerations fail to maintain exposures within operational limits. In this case, very high exposure levels are possible which could result in observable health effects and even be life threatening. Under these assumptions, potential spacesuit radiation exposures have been studied using known historical solar particle events to gain insight on the usefulness of modification of spacesuit design in which the control of skin exposure is a critical design issue and reduction of blood forming organ exposure is desirable.
Technical Paper

Space Shuttle Crew Compartment Debris/Contamination

1992-07-01
921345
Debris in the Orbiter crew compartment of early Shuttle missions created crew health concerns and physiological discomfort, and was the cause of some equipment malfunctions. Debris from Orbiters during flight and processing was analyzed, quantized, and evaluated to determine its source. Records were kept on the amount of debris vacuumed by the crew during on-orbit cleaning and the amount found on air-cooled avionics boxes during ground turnaround. After ground turnaround operations at Kennedy Space Center and Palmdale were reviewed from a facility, materials use, and materials control standpoint, the following remedial steps were taken.
Technical Paper

Esarad--Improvements to the European Space AgencyS Radiative Analyses

1996-07-01
961374
ESARAD is an integrated suite of analysis tools for thermal radiative analysis. The suite provides modules for: • Geometry Definition; • Calculation of view factor, radiative exchange factor and solar, albedo and planet flux results; •Visualization of models in orbit with pre- and post-processing of radiative and thermal results; • Reporting of all aspects of the model; and • Generation of Input Files for Thermal Analysis tools. ESARAD is driven by a fully developed GUI, providing the user with a simple, intuitive windows, menus, forms interface to all its features. A modern, block structured language can also be used to run ESARAD. This gives the advanced user great power and flexibility to perform the most complex analyses. ESARAD was designed and developed between 1988 and 1991 to replace the VWHEAT software used by ESA at that time.
Technical Paper

Design Approach and Implementation of a Mars Surface Food Production Unit

2005-07-11
2005-01-2824
This paper describes a design proposal for adapting the OGEGU Food Production Unit (FPU) to the surface of Mars in order to produce up to 40% of the diet for a six-member crew by growing a pre-defined set of vegetable food species. The external structure, lighting system and plant support system are assessed using ESM analysis. The study shows that the mass of an FPU operating on the Mars surface, featuring an opaque inflatable structure plus all the required subsystems and equipment, is in the order of 14,000 kg. The required volume is around 150 m3 and the power consumption is around 140 kW. A reduction of c. 20 kW could be obtained by exploiting natural light using transparent materials. Finally, the paper concludes with the identification of some technological gaps that need to be investigated further for the purpose of establishing a feasible FPU on Mars.
Technical Paper

Equivalent System Mass of Producing Yeast and Flat Breads from Wheat Berries, A Comparison of Mill Type

2004-07-19
2004-01-2525
Wheat is a candidate crop for the Advanced Life Support (ALS) system, and cereal grains and their products will be included on long-term space missions beyond low earth orbit. While the exact supply scenario has yet to be determined, some type of post-processing of these grains must occur if they are shipped as bulk ingredients or grown on site for use in foods. Understanding the requirements for processing grains in space is essential for incorporating the process into the ALS food system. The ESM metric developed by NASA describes and compares individual system impact on a closed system in terms of a single parameter, mass. The objective of this study was to compare the impact of grain mill type on the ESM of producing yeast and flat breads. Hard red spring wheat berries were ground using a Brabender Quadrumat Jr. or the Kitchen-Aid grain mill attachment (both are proposed post-harvest technologies for the ALS system) to produce white and whole wheat flour, respectively.
Technical Paper

Optimization of Chamber-Grown Crops in Menu Planning

1998-07-13
981559
NASA-JSC is evaluating planetary mission scenarios where plants will provide the majority of the diet for the crew. The requirements of both plants and crew diet need to be integrated in the development of the final food system. Plant growth has limitations in type and quantity of crops to be produced while diets must meet palatability and nutritional requirements as well as limited processing labor, equipment and power. A plan is presented for the development of a food system based heavily on grown crops. Although the steps taken in the development are applicable to the design of any long duration flight food system. The process begins with the development of a food list, followed by preliminary menu design, nutritional analysis and finally menu testing.
X