Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Insights into Rear Surface Contamination Using Simulation of Road Spray and Aerodynamics

2014-04-01
2014-01-0610
Contamination of vehicle rear surfaces is a significant issue for customers. Along with being unsightly, it can degrade the performance of rear camera systems and lighting, prematurely wear rear screens and wipers, and transfer soil to customers moving goods through the rear tailgate. Countermeasures, such as rear camera wash or automated deployment add expense and complexity for OEMs. This paper presents a rear surface contamination model for a fully detailed SUV based on the use of a highly-resolved time-accurate aerodynamic simulation realised through the use of a commercial Lattice-Boltzmann solver, combined with Lagrangian Particle Tracking to simulate droplet advection and surface water dynamics via a thin film model. Droplet break-up due to aerodynamic shear is included, along with splash and stripping from the surface film. The effect of two-way momentum coupling is included in a sub-set of simulations.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Journal Article

Contribution of High Accuracy Temperature Sensors Towards Fuel Economy and Robust Calibration

2014-04-01
2014-01-1548
Tighter emission limits are discussed and established around the world to improve quality of the air we breathe. In order to control global warming, authorities ask for lower CO2 emissions from combustion engines. Lots of efforts are done to reduce engine out emissions and/or reduce remaining by suitable after treatment systems. Watlow, among others, a manufacturer of high accurate, active temperature sensor ExactSense™, wanted to understand if temperature sensor accuracy can have an influence on fuel consumption (FC). For this purpose a numerical approach was chosen where several non-road driving cycles (NRTCs) were simulated with the data base of a typical Stage IV heavy duty diesel engine. The engine is equipped with an exhaust gas after treatment system consisting of a DOC, CDPF and an SCR. In this work scope, the investigations shall be restricted to the FC benefits obtained in the active and passive DPF regeneration.
Journal Article

Development Trends for Commercial and Industrial Engines

2014-09-30
2014-01-2325
Exhaust emission reduction and improvements in energy consumption will continuously determine future developments of on-road and off-road engines. Fuel flexibility by substituting Diesel with Natural Gas is becoming increasingly important. To meet these future requirements engines will get more complex. Additional and more advanced accessory systems for waste heat recovery (WHR), gaseous fuel supply, exhaust after-treatment and controls will be added to the base engine. This additional complexity will increase package size, weight and cost of the complete powertrain. Another critical element in future engine development is the optimization of the base engine. Fundamental questions are how much the base engine can contribute to meet the future exhaust emission standards, including CO2 and how much of the incremental size, weight and cost of the additional accessories can be compensated by optimizing the base engine.
Journal Article

Advanced Numerical and Experimental Techniques for the Extension of a Turbine Mapping

2013-09-08
2013-24-0119
1D codes are nowadays commonly used to investigate a turbocharged ICE performance, turbo-matching and transient response. The turbocharger is usually described in terms of experimentally derived characteristic maps. The latter are commonly measured using the compressor as a brake for the turbine, under steady “hot gas” tests. This approach causes some drawbacks: each iso-speed is commonly limited to a narrow pressure ratio and mass flow rate range, while a wider operating domain is experienced on the engine; the turbine thermal conditions realized on the test rig may strongly differ from the coupled-to-engine operation; a “conventional” net turbine efficiency is really measured, since it includes the effects of the heat exchange on the compressor side, together with bearing friction and windage losses.
Journal Article

Automated Verification and Validation Methods for Transmission Control Software

2015-04-14
2015-01-0163
With the increasing popularity of seamless gear changing and smooth driving experience along with the need for high fuel efficiency, transmission system development has rapidly increased in complexity. So too has transmission control software while quality requirements are high and time-to-market is short. As a result, extensive testing and documentation along with quick and efficient development methods are required. FEV responds to these challenges by developing and integrating a transmission software product line with an automated verification and validation process according to the concept of Continuous Integration (CI). Hence, the following paper outlines a software architecture called “PERSIST” where complexity is reduced by a modular architecture approach. Additionally, modularity enables testability and tracking of quality defects to their root cause.
Journal Article

Fuel Economy Benefits for Commercial Diesel Engines with Waste Heat Recovery

2015-09-29
2015-01-2807
In the near future engine emitted carbon dioxides (CO2) are going to be limited for all vehicle categories with respect to the Green House Gases (GHG) norms. To tackle this challenge, new concepts need to be developed. For this reason waste heat recovery (WHR) is a promising research field. For commercial vehicles the first phase of CO2 emission legislation will be introduced in the USA in 2014 and will be further tightened towards 2030. Besides the US, CO2 emission legislation for commercial engines will also be introduced in Europe in the near future. The demanded CO2 reduction calls for a better fuel economy which is also of interest for the end user, specifically for the owners of heavy duty diesel vehicles with high mileages. To meet these future legislation objectives, a waste heat recovery system is a beneficial solution of recovering wasted energies from different heat sources in the engine.
Journal Article

Feedforward Control Approach for Digital Combustion Rate Shaping Realizing Predefined Combustion Processes

2015-04-14
2015-01-0876
The aim of this research collaboration focuses on the realization of a novel Diesel combustion control strategy, known as Digital Combustion Rate Shaping (DiCoRS) for transient engine operation. Therefore, this paper presents an initial, 3D-CFD simulation based evaluation of a physical model-based feedforward controller, considered as a fundamental tool to apply real-time capable combustion rate shaping to a future engine test campaign. DiCoRS is a promising concept to improve noise, soot and HC/CO emissions in parallel, without generating drawbacks in NOx emission and combustion efficiency. Instead of controlling distinct combustion characteristics, DiCoRS aims at controlling the full combustion process and therefore represents the highest possible degree of freedom for combustion control. The manipulated variable is the full injection profile, generally consisting of multiple injection events.
Journal Article

The Oxidation Potential Number: An Index to Evaluate Inherent Soot Reduction in D.I. Diesel Spray Plumes

2015-09-01
2015-01-1934
A new index to evaluate the inherent soot reduction in a diesel-like spray plume is proposed in this study. The index is named “Oxidation Potential Number” and was derived with the help of a computational fluid dynamics (CFD) software. C8 - C16 n-alkanes, 1-alcohols and di-n-ethers were studied with the help of this index over four part load engine operating conditions, representative of a C-class diesel vehicle. The CFD modelling results have shown that C8 molecules feature a higher potentiality to reduce the soot. Thus, C8 molecules were tested in a single cylinder diesel engine over the same operating conditions. In conclusion, the proposed index is compared with the soot engine out emission.
Journal Article

Metric-based Evaluation of Software Architecture for an Engine Management System

2016-04-05
2016-01-0037
Powertrain software development for series production faces multifaceted challenges related to high functional complexity, high quality standards, reduced time to market and high development costs. Software architecture tackles the above mentioned challenges by breaking down the complexity of application software into modular components. Hence, design errors introduced during that phase cause significant cost and time deviations. Early and repeated analysis of new and modified architecture artifacts is required to detect design errors and the impact of the subsequent changes in the software architecture. Engine management software has a high degree of functional complexity and large number of system variants depending upon market requirements. This paper deals with the methods to perform automated evaluation of Renault’s EMS 2012 Engine Management Software in a Continuous Integration Framework.
Technical Paper

Parametric Study of Reduced Span Side Tapering on a Simplified Model with Wheels

2020-04-14
2020-01-0680
Many modern vehicles have blunt rear end geometries for design aesthetics and practicality; however, such vehicles are potentially high drag. The application of tapering; typically applied to an entire edge of the base of the geometry is widely reported as a means of reducing drag, but in many cases, this is not practical on real vehicles. In this study side tapers are applied to only part of the side edge of a simplified automotive geometry, to show the effects of practical implementations of tapers. The paper reports on a parametric study undertaken in Loughborough University’s Large Wind Tunnel with the ¼ scale Windsor model equipped with wheels. The aerodynamic effect of implementing partial side edge tapers is assessed from a full height taper to a 25% taper in both an upper and lower body configuration. These were investigated using force and moment coefficients, pressure measurements and planar particle image velocimetry (PIV).
Technical Paper

Holistic Thermal Energy Modelling for Full Hybrid Electric Vehicles (HEVs)

2020-04-14
2020-01-0151
Full hybrid electric vehicles are usually defined by their capability to drive in a fully electric mode, offering the advantage that they do not produce any emissions at the point of use. This is particularly important in built up areas, where localized emissions in the form of NOx and particulate matter may worsen health issues such as respiratory disease. However, high degrees of electrification also mean that waste heat from the internal combustion engine is often not available for heating the cabin and for maintaining the temperature of the powertrain and emissions control system. If not managed properly, this can result in increased fuel consumption, exhaust emissions, and reduced electric-only range at moderately high or low ambient temperatures negating many of the benefits of the electrification. This paper describes the development of a holistic, modular vehicle model designed for development of an integrated thermal energy management strategy.
Journal Article

Simulation of Rear Glass and Body Side Vehicle Soiling by Road Sprays

2011-04-12
2011-01-0173
Numerical simulation of aerodynamics for vehicle development is used to meet a wide range of performance targets, including aerodynamic drag for fuel efficiency, cooling flow rates, and aerodynamic lift for vehicle handling. The aerodynamic flow field can also be used to compute the advection of small particles such as water droplets, dust, dirt, sand, etc., released into the flow domain, including the effects of mass, gravity, and the forces acting on the particles by the airflow. Previous efforts in this topic have considered the water sprays ejected by rotating wheels when driving on a wet road. The road spray carries dirt particles and can obscure the side and rear glazing. In this study, road sprays are considered in which the effects of additional water droplets resulting from splashing and dripping of particles from the wheel house and rear under body are added to help understand the patterns of dirt film accumulation on the side glass and rear glass.
Journal Article

Vehicle Demonstration of Naphtha Fuel Achieving Both High Efficiency and Drivability with EURO6 Engine-Out NOx Emission

2013-04-08
2013-01-0267
Demand for transport energy is growing but this growth is skewed heavily toward commercial transport, such as, heavy road, aviation, marine and rail which uses heavier fuels like diesel and kerosene. This is likely to lead to an abundance and easy availability of lighter fractions like naphtha, which is the product of the initial distillation of crude oil. Naphtha will also require lower energy to produce and hence will have a lower CO₂ impact compared to diesel or gasoline. It would be desirable to develop engine combustion systems that could run on naphtha. Many recent studies have shown that running compression ignition engines on very low Cetane fuels, which are very similar to naphtha in their auto-ignition behavior, offers the prospect of developing very efficient, clean, simple and cheap engine combustion systems. Significant development work would be required before such systems could power practical vehicles.
Journal Article

Optimization of Electrified Powertrains for City Cars

2012-06-01
2011-01-2451
Sustainable and energy-efficient consumption is a main concern in contemporary society. Driven by more stringent international requirements, automobile manufacturers have shifted the focus of development into new technologies such as Hybrid Electric Vehicles (HEVs). These powertrains offer significant improvements in the efficiency of the propulsion system compared to conventional vehicles, but they also lead to higher complexities in the design process and in the control strategy. In order to obtain an optimum powertrain configuration, each component has to be laid out considering the best powertrain efficiency. With such a perspective, a simulation study was performed for the purpose of minimizing well-to-wheel CO2 emissions of a city car through electrification. Three different innovative systems, a Series Hybrid Electric Vehicle (SHEV), a Mixed Hybrid Electric Vehicle (MHEV) and a Battery Electric Vehicle (BEV) were compared to a conventional one.
Journal Article

Simulation of Rear and Body Side Vehicle Soiling by Road Sprays Using Transient Particle Tracking

2013-04-08
2013-01-1256
Numerical simulations have proven to be effective tools for the aerodynamic design of vehicles, helping to reduce drag, improve cooling flows, and balance aerodynamic lift. Aeroacoustic simulations can also be performed; these can give guidance on how design changes may affect the noise level within the cabin. However, later in the development process it may be discovered that soiling management issues, for example, necessitate design changes. These may have adverse consequences for noise or require extra expense in the form of technological counter-measures (i.e. hydrophobic glass). Performing soiling simulations can allow these potential issues to be addressed earlier in the design process. One of the areas where simulation can be particularly useful is in the prediction of soiling due to wheel spray.
Journal Article

Insights into Cold-Start DISI Combustion in an Optical Engine Operating at −7°C

2013-04-08
2013-01-1309
Particulate Matter (PM) emissions reduction is an imminent challenge for Direct Injection Spark Ignition (DISI) engine designers due to the introduction of Particulate Number (PN) standards in the proposed Euro 6 emissions legislation aimed at delivering the next phase of air quality improvements. An understanding of how the formation of combustion-derived nanoparticulates in engines is affected by the engine operating temperature is important for air quality improvement and will influence future engine design and control strategies. This investigation has examined the effect on combustion and PM formation when reducing the engine operating temperature to -7°C. A DISI single-cylinder optical research engine was modified to simulate a range of operating temperatures down to the proposed -7°C.
Journal Article

Performance Plus Range: Combined Battery Concept for Plug‑In Hybrid Vehicles

2013-04-08
2013-01-1525
PlugIn Hybrid Electric Vehicles (PHEV) offer the opportunity to experience electric driving without the risk of vehicle break-down due to a low battery charge state. Thus, PHEV's represent an attractive means of meeting future CO2-legislation. PHEV batteries must fulfill a divergent list of requirements: on the one hand, the battery must supply sufficient energy to ensure it can be driven an appropriate distance in EV-mode. On the other hand, even with a low state-of-charge (SOC), the battery must supply sufficient power to assist the engine in vehicle acceleration or to recuperate on deceleration. This leads to a compromise in terms of cell selection. Fundamentally, high energy cells cannot provide high charge and discharge rates and high power cells cannot provide sufficient energy.
Journal Article

Impact of Biomass-Derived Fuels on Soot Oxidation and DPF Regeneration Behavior

2013-04-08
2013-01-1551
To comply with the new regulations on particulate matter emissions, the manufacturers of light-duty as well as heavy-duty vehicles more commonly use diesel particulate filters (DPF). The regeneration of DPF depends to a significant extent on the properties of the soot stored. Within the Cluster of Excellence "Tailor-Made Fuels from Biomass (TMFB)" at RWTH Aachen University, the Institute for Combustion Engines carried out a detailed investigation program to explore the potential of future biofuel candidates for optimized combustion systems. The experiments for particulate measurements and analysis were conducted on a EURO 6-compliant High Efficiency Diesel Combustion System (HECS) with petroleum-based diesel fuel as reference and a today's commercial biofuel (i.e., FAME) as well as a potential future biomass-derived fuel candidate (i.e., 2-MTHF/DBE). Thermo gravimetric analyzer (TGA) was used in this study to evaluate the oxidative reactivity of the soot.
Journal Article

Potential of Hydrogenated Vegetable Oil (HVO) in Future High Efficiency Combustion System

2013-04-08
2013-01-1677
The limited availability of fossil fuels and the increasing environmental pollution will lead to an increased demand for sustainable biofuels. The production of bio-based diesel fuels from vegetable oils is commonly accomplished using a process known as Trans-esterification. The product of Transesterification is Fatty Acid Methyl Ester (FAME), commonly known as Biodiesel. An alternative process is Hydro-treatment of seed oils or animal waste fats to produce highly paraffinic renewable diesel fuel called Hydrogenated Vegetable Oil (HVO). Detailed investigations were carried out by the “Department of Advanced Diesel Engine Development” at FEV GmbH Aachen (Germany), to explore the potential of this biofuel compound as a candidate for future compression ignition engines.
X